These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 14770300)

  • 1. The bioinformatics challenges in comparative analysis of cereal genomes-an overview.
    Bellgard M; Ye J; Gojobori T; Appels R
    Funct Integr Genomics; 2004 Mar; 4(1):1-11. PubMed ID: 14770300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmental chromosomal duplications harbouring group IV CONSTANS-like genes in cereals.
    Cockram J; Howells RM; O'Sullivan DM
    Genome; 2010 Mar; 53(3):231-40. PubMed ID: 20237600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley.
    La Rota M; Kantety RV; Yu JK; Sorrells ME
    BMC Genomics; 2005 Feb; 6():23. PubMed ID: 15720707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geographic mosaics and changing rates of cereal domestication.
    Allaby RG; Stevens C; Lucas L; Maeda O; Fuller DQ
    Philos Trans R Soc Lond B Biol Sci; 2017 Dec; 372(1735):. PubMed ID: 29061901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-Generation Sequencing Promoted the Release of Reference Genomes and Discovered Genome Evolution in Cereal Crops.
    Huang Y; Liu H; Xing Y
    Curr Issues Mol Biol; 2018; 27():37-50. PubMed ID: 28885173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gramene: a bird's eye view of cereal genomes.
    Jaiswal P; Ni J; Yap I; Ware D; Spooner W; Youens-Clark K; Ren L; Liang C; Zhao W; Ratnapu K; Faga B; Canaran P; Fogleman M; Hebbard C; Avraham S; Schmidt S; Casstevens TM; Buckler ES; Stein L; McCouch S
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D717-23. PubMed ID: 16381966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gramene, a tool for grass genomics.
    Ware DH; Jaiswal P; Ni J; Yap IV; Pan X; Clark KY; Teytelman L; Schmidt SC; Zhao W; Chang K; Cartinhour S; Stein LD; McCouch SR
    Plant Physiol; 2002 Dec; 130(4):1606-13. PubMed ID: 12481044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into cereal genomes from two draft genome sequences of rice.
    Bancroft I
    Genome Biol; 2002; 3(6):REVIEWS1015. PubMed ID: 12093379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae.
    Dunford RP; Kurata N; Laurie DA; Money TA; Minobe Y; Moore G
    Nucleic Acids Res; 1995 Jul; 23(14):2724-8. PubMed ID: 7651833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants.
    Murozuka E; Massange-Sánchez JA; Nielsen K; Gregersen PL; Braumann I
    PLoS One; 2018; 13(12):e0209769. PubMed ID: 30592743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genotypic and phenotypic information source for marker-assisted selection of cereals: the CEREALAB database.
    Milc J; Sala A; Bergamaschi S; Pecchioni N
    Database (Oxford); 2011; 2011():baq038. PubMed ID: 21247929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).
    Hooper CM; Castleden IR; Aryamanesh N; Jacoby RP; Millar AH
    Plant Cell Physiol; 2016 Jan; 57(1):e9. PubMed ID: 26556651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Of floral fortune: tinkering with the grain yield potential of cereal crops.
    Sakuma S; Schnurbusch T
    New Phytol; 2020 Mar; 225(5):1873-1882. PubMed ID: 31509613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat.
    La Rota M; Sorrells ME
    Funct Integr Genomics; 2004 Mar; 4(1):34-46. PubMed ID: 14740255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific patterns of gene space organisation revealed in wheat by using the combination of barley and wheat genomic resources.
    Rustenholz C; Hedley PE; Morris J; Choulet F; Feuillet C; Waugh R; Paux E
    BMC Genomics; 2010 Dec; 11():714. PubMed ID: 21167071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution.
    Guo H; Moose SP
    Plant Cell; 2003 May; 15(5):1143-58. PubMed ID: 12724540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blurring the boundaries between cereal crops and model plants.
    Borrill P
    New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triticeae resources in Ensembl Plants.
    Bolser DM; Kerhornou A; Walts B; Kersey P
    Plant Cell Physiol; 2015 Jan; 56(1):e3. PubMed ID: 25432969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice--the pivotal genome in cereal comparative genetics.
    Gale M; Moore G; Devos K
    Novartis Found Symp; 2001; 236():46-53; discussion 53-8. PubMed ID: 11387986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.