These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Interactions of K+ATP channel blockers with Na+/K+-ATPase. Liu L; Gable ME; Garlid KD; Askari A Mol Cell Biochem; 2007 Dec; 306(1-2):231-7. PubMed ID: 17721811 [TBL] [Abstract][Full Text] [Related]
9. [The effect of potential-dependent potassium uptake on membrane potential in rat brain mitochondria]. Akopova OV; Nosar' VI; Kolchinskaia LI; Man'kovskaia IN; Malysheva MK; Sagach VF Ukr Biokhim Zh (1999); 2013; 85(1):33-41. PubMed ID: 23534288 [TBL] [Abstract][Full Text] [Related]
10. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale. Akopova O; Kolchinskaya L; Nosar V; Mankovska I; Sagach V BMC Mol Cell Biol; 2020 Apr; 21(1):31. PubMed ID: 32306897 [TBL] [Abstract][Full Text] [Related]
11. Block of cardiac ATP-sensitive K(+) channels reduces hydroxyl radicals in the rat myocardium. Obata T; Yamanaka Y Arch Biochem Biophys; 2000 Jun; 378(2):195-200. PubMed ID: 10860536 [TBL] [Abstract][Full Text] [Related]
12. Modulation of 1-methyl-4-phenylpyridinium-induced mitochondrial dysfunction and cell death in PC12 cells by K(ATP) channel block. Lee CS; Kim YJ; Ko HH; Han ES J Neural Transm (Vienna); 2007 Mar; 114(3):297-305. PubMed ID: 17109075 [TBL] [Abstract][Full Text] [Related]
13. CNTF and BDNF have similar effects on retinal ganglion cell survival but differential effects on nitric oxide synthase expression soon after optic nerve injury. Zhang CW; Lu Q; You SW; Zhi Y; Yip HK; Wu W; So KF; Cui Q Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1497-503. PubMed ID: 15790921 [TBL] [Abstract][Full Text] [Related]
14. State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. Jabůrek M; Yarov-Yarovoy V; Paucek P; Garlid KD J Biol Chem; 1998 May; 273(22):13578-82. PubMed ID: 9593694 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial ATP-sensitive potassium channel: a novel site for neuroprotection. Yamauchi T; Kashii S; Yasuyoshi H; Zhang S; Honda Y; Akaike A Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2750-6. PubMed ID: 12766083 [TBL] [Abstract][Full Text] [Related]
16. Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. Hanley PJ; Gopalan KV; Lareau RA; Srivastava DK; von Meltzer M; Daut J J Physiol; 2003 Mar; 547(Pt 2):387-93. PubMed ID: 12562916 [TBL] [Abstract][Full Text] [Related]
17. Blocking cardiac ATP-sensitive K+ channels reduces hydroxyl radicals caused by potassium chloride-induced depolarization in the rat myocardium. Obata T Anal Biochem; 2006 Sep; 356(1):59-65. PubMed ID: 16854364 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of oxygen consumption in skeletal muscle-derived mitochondria by pinacidil, diazoxide, and glibenclamide, but not by 5-hydroxydecanoate. Montoya-Pérez R; Saavedra-Molina A; Trujillo X; Huerta M; Andrade F; Sánchez-Pastor E; Ortiz M J Bioenerg Biomembr; 2010 Feb; 42(1):21-7. PubMed ID: 20066482 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels. Hu H; Sato T; Seharaseyon J; Liu Y; Johns DC; O'Rourke B; Marbán E Mol Pharmacol; 1999 Jun; 55(6):1000-5. PubMed ID: 10347240 [TBL] [Abstract][Full Text] [Related]
20. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Busija DW; Katakam P; Rajapakse NC; Kis B; Grover G; Domoki F; Bari F Brain Res Bull; 2005 Jul; 66(2):85-90. PubMed ID: 15982523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]