These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 1477276)
1. Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra. Klinger AL; Braiman MS Biophys J; 1992 Nov; 63(5):1244-55. PubMed ID: 1477276 [TBL] [Abstract][Full Text] [Related]
2. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II. Heck M; Schädel SA; Maretzki D; Bartl FJ; Ritter E; Palczewski K; Hofmann KP J Biol Chem; 2003 Jan; 278(5):3162-9. PubMed ID: 12427735 [TBL] [Abstract][Full Text] [Related]
3. Conformations of the active and inactive states of opsin. Vogel R; Siebert F J Biol Chem; 2001 Oct; 276(42):38487-93. PubMed ID: 11502747 [TBL] [Abstract][Full Text] [Related]
4. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852 [TBL] [Abstract][Full Text] [Related]
5. The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist. Mahalingam M; Vogel R Biochemistry; 2006 Dec; 45(51):15624-32. PubMed ID: 17176084 [TBL] [Abstract][Full Text] [Related]
6. Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin. Kibelbek J; Mitchell DC; Beach JM; Litman BJ Biochemistry; 1991 Jul; 30(27):6761-8. PubMed ID: 1905955 [TBL] [Abstract][Full Text] [Related]
7. Effect of phosphorylation on receptor conformation: the metarhodopsin I in equilibrium with metarhodopsin II equilibrium in multiply phosphorylated rhodopsin. Mitchell DC; Kibelbek J; Litman BJ Biochemistry; 1992 Sep; 31(35):8107-11. PubMed ID: 1525152 [TBL] [Abstract][Full Text] [Related]
8. Evidence for rhodopsin refolding during the decay of Meta II. Rothschild KJ; Gillespie J; DeGrip WJ Biophys J; 1987 Feb; 51(2):345-50. PubMed ID: 3828465 [TBL] [Abstract][Full Text] [Related]
9. Structural and functional properties of metarhodopsin III: recent spectroscopic studies on deactivation pathways of rhodopsin. Bartl FJ; Vogel R Phys Chem Chem Phys; 2007 Apr; 9(14):1648-58. PubMed ID: 17396175 [TBL] [Abstract][Full Text] [Related]
10. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro. Sakamoto T; Khorana HG Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826 [TBL] [Abstract][Full Text] [Related]
11. Conformational changes of cytosolic loops of bovine rhodopsin during the transition to metarhodopsin-II: an investigation by Fourier transform infrared difference spectroscopy. Ganter UM; Charitopoulos T; Virmaux N; Siebert F Photochem Photobiol; 1992 Jul; 56(1):57-62. PubMed ID: 1508983 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. Zvyaga TA; Fahmy K; Siebert F; Sakmar TP Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533 [TBL] [Abstract][Full Text] [Related]
13. Interaction with transducin depletes metarhodopsin III: a regulated retinal storage in visual signal transduction? Zimmermann K; Ritter E; Bartl FJ; Hofmann KP; Heck M J Biol Chem; 2004 Nov; 279(46):48112-9. PubMed ID: 15322130 [TBL] [Abstract][Full Text] [Related]
14. The identity of metarhodopsin III. Kolesnikov AV; Golobokova EY; Govardovskii VI Vis Neurosci; 2003; 20(3):249-65. PubMed ID: 14570247 [TBL] [Abstract][Full Text] [Related]
15. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy. Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280 [TBL] [Abstract][Full Text] [Related]
16. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway. Ganter UM; Longstaff C; Pajares MA; Rando RR; Siebert F Biophys J; 1991 Mar; 59(3):640-4. PubMed ID: 2049524 [TBL] [Abstract][Full Text] [Related]
17. Effect of pH on the formation and decay of the metarhodopsins of the frog. Baumann C; Zeppenfeld W J Physiol; 1981 Aug; 317():347-64. PubMed ID: 6975819 [TBL] [Abstract][Full Text] [Related]
18. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin. Matsumoto H; Yoshizawa T Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914 [TBL] [Abstract][Full Text] [Related]
19. Metarhodopsin III formation and decay kinetics: comparison of bovine and human rhodopsin. Lewis JW; van Kuijk FJ; Carruthers JA; Kliger DS Vision Res; 1997 Jan; 37(1):1-8. PubMed ID: 9068826 [TBL] [Abstract][Full Text] [Related]
20. Conformational Differences among Metarhodopsin I, Metarhodopsin II, and Opsin Probed by Wide-Angle X-ray Scattering. Imamoto Y; Kojima K; Oka T; Maeda R; Shichida Y J Phys Chem B; 2019 Oct; 123(43):9134-9142. PubMed ID: 31580080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]