These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 1478091)

  • 1. Cardiac propagation simulation.
    Pollard AE; Hooke N; Henriquez CS
    Crit Rev Biomed Eng; 1992; 20(3-4):171-210. PubMed ID: 1478091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of depolarization in a membrane-equations-based model of the anisotropic ventricle.
    Huiskamp G
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):847-55. PubMed ID: 9644893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2006 Nov; 204(1):132-65. PubMed ID: 16904130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of three-dimensional propagation in ventricular myocardium. Effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation.
    Pollard AE; Burgess MJ; Spitzer KW
    Circ Res; 1993 Apr; 72(4):744-56. PubMed ID: 8443866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of propagation along a cylindrical bundle of cardiac tissue--II: Results of simulation.
    Henriquez CS; Plonsey R
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):861-75. PubMed ID: 2227973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Block of impulse propagation at an abrupt tissue expansion: evaluation of the critical strand diameter in 2- and 3-dimensional computer models.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 Sep; 30(3):449-59. PubMed ID: 7585837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of the electrical activity of the heart and computer simulation of the electrocardiogram.
    Gulrajani RM
    Crit Rev Biomed Eng; 1988; 16(1):1-66. PubMed ID: 3293913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing.
    Trudel MC; Dubé B; Potse M; Gulrajani RM; Leon LJ
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1319-29. PubMed ID: 15311816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramural activation and repolarization sequences in canine ventricles. Experimental and simulation studies.
    Taccardi B; Punske BB; Sachse F; Tricoche X; Colli-Franzone P; Pavarino LF; Zabawa C
    J Electrocardiol; 2005 Oct; 38(4 Suppl):131-7. PubMed ID: 16226088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes.
    Caldwell BJ; Trew ML; Sands GB; Hooks DA; LeGrice IJ; Smaill BH
    Circ Arrhythm Electrophysiol; 2009 Aug; 2(4):433-40. PubMed ID: 19808500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrotonic cell-cell interactions in cardiac tissue: effects on action potential propagation and repolarization.
    Rudy Y
    Ann N Y Acad Sci; 2005 Jun; 1047():308-13. PubMed ID: 16093506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epicardial fiber organization in swine right ventricle and its impact on propagation.
    Vetter FJ; Simons SB; Mironov S; Hyatt CJ; Pertsov AM
    Circ Res; 2005 Feb; 96(2):244-51. PubMed ID: 15618536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.