These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 1478093)

  • 1. The use of spectral methods in bidomain studies.
    Trayanova N; Pilkington T
    Crit Rev Biomed Eng; 1992; 20(3-4):255-77. PubMed ID: 1478093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bidomain model with periodic intracellular junctions: a one-dimensional analysis.
    Trayanova N; Pilkington TC
    IEEE Trans Biomed Eng; 1993 May; 40(5):424-33. PubMed ID: 8225331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational techniques for solving the bidomain equations in three dimensions.
    Vigmond EJ; Aguel F; Trayanova NA
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete versus syncytial tissue behavior in a model of cardiac stimulation--II: Results of simulation.
    Trayanova N
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1141-50. PubMed ID: 9214833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation.
    Trayanova NA; Roth BJ; Malden LJ
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle.
    Roth BJ
    J Math Biol; 1992; 30(6):633-46. PubMed ID: 1640183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forward Euler stability of the bidomain model of cardiac tissue.
    Puwal S; Roth BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):951-3. PubMed ID: 17518295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete versus syncytial tissue behavior in a model of cardiac stimulation--I: Mathematical formulation.
    Trayanova N
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1129-40. PubMed ID: 9214832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to the determination of cardiac potential distributions: application to the analysis of electrode configurations.
    Johnston BM; Johnston PR; Kilpatrick D
    Math Biosci; 2006 Aug; 202(2):288-309. PubMed ID: 16797036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-D finite element bidomain/monodomain torso model.
    Huang Q; Eason JC; Claydon FJ
    IEEE Trans Biomed Eng; 1999 Jan; 46(1):26-34. PubMed ID: 9919823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac propagation simulation.
    Pollard AE; Hooke N; Henriquez CS
    Crit Rev Biomed Eng; 1992; 20(3-4):171-210. PubMed ID: 1478091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sensitivity study of conductivity values in the passive bidomain equation.
    Johnston PR
    Math Biosci; 2011 Aug; 232(2):142-50. PubMed ID: 21624377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation.
    Graham LS; Kilpatrick D
    Ann Biomed Eng; 2010 Dec; 38(12):3630-48. PubMed ID: 20628818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating the electrical behavior of cardiac tissue using the bidomain model.
    Henriquez CS
    Crit Rev Biomed Eng; 1993; 21(1):1-77. PubMed ID: 8365198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of propagation along a cylindrical bundle of cardiac tissue--II: Results of simulation.
    Henriquez CS; Plonsey R
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):861-75. PubMed ID: 2227973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology driven adaptivity for the numerical solution of the bidomain equations.
    Whiteley JP
    Ann Biomed Eng; 2007 Sep; 35(9):1510-20. PubMed ID: 17541825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current injection into a two-dimensional anisotropic bidomain.
    Sepulveda NG; Roth BJ; Wikswo JP
    Biophys J; 1989 May; 55(5):987-99. PubMed ID: 2720084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.