BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 147811)

  • 1. Degradation of human fibrinogen by plasmin: isolation and partial characterization of an early degradation product.
    Regañon E; Aznar J; Vila V
    Haemostasis; 1978; 7(1):26-34. PubMed ID: 147811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrin and fibrinogen proteolysis products: comparison between gel filtration and SDS polyacrylamide electrophoresis analysis.
    Alkjaersig N; Davies A; Fletcher A
    Thromb Haemost; 1977 Aug; 38(2):524-5. PubMed ID: 145666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmic degradation of fibrinogen Paris I.
    Budzynski AZ; Marder VJ
    J Lab Clin Med; 1976 Nov; 88(5):817-25. PubMed ID: 978044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The role of DL and DH degradation products in the reactions of the plasmin hydrolysis of fibrinogen and fibrin].
    Rozenfel'd MA; Leonova VB; Khavkina LS
    Izv Akad Nauk SSSR Biol; 1991; (3):334-42. PubMed ID: 1835465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A re-examination of the cleavage of fibrinogen and fibrin by plasmin.
    Ferguson EW; Fretto LJ; McKee PA
    J Biol Chem; 1975 Sep; 250(18):7210-8. PubMed ID: 126232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of an apparently lower molecular weight gamma-chain variant in fibrinogen Kyoto I. The replacement of gamma-asparagine 308 by lysine which causes accelerated cleavage of fragment D1 by plasmin and the generation of a new plasmin cleavage site.
    Yoshida N; Terukina S; Okuma M; Moroi M; Aoki N; Matsuda M
    J Biol Chem; 1988 Sep; 263(27):13848-56. PubMed ID: 2971046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subfraction of fragment D isolated from a plasmin hydrolysate of human fibrinogen.
    Hörmann H
    Hoppe Seylers Z Physiol Chem; 1975 Dec; 356(12):1947-53. PubMed ID: 129428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of peptides cleaved by plasmin from the C-terminal polymerization domain of human fibrinogen.
    Southan C; Thompson E; Panico M; Etienne T; Morris HR; Lane DA
    J Biol Chem; 1985 Oct; 260(24):13095-101. PubMed ID: 2932434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of fibrinogen and fibrin by plasmin and nonplasmin proteases in the chronic subdural hematoma: evaluation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot.
    Nomura S; Kashiwagi S; Ito H; Mimura Y; Nakamura K
    Electrophoresis; 1993 Dec; 14(12):1318-21. PubMed ID: 8137796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple and practical method for isolation of an early plasmin degradation product of human fibrinogen.
    Takagi K; Kawai T
    Thromb Haemost; 1977 Jun; 37(3):464-70. PubMed ID: 142313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unreliability in the estimation of the molecular weight of fibrinogen degradation products (FDPs) by polyacrylamide/sodium dodecyl sulphate electrophoresis (SDS/PAGE).
    Arocha-Piñango CL; Perales J; Carvajal Z
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1985; 112(5):737-41. PubMed ID: 2416650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptokinase-dependent potentiating factor (SK-potentiator) for plasminogen activation from human plasma: its identification as a fibrinogen degradation product.
    Hishikawa-Itoh Y; Sugie I; Kato H; Iwanaga S
    J Biochem; 1982 Oct; 92(4):1129-40. PubMed ID: 6890955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the physicochemical properties of fragment D derivatives of fibrinogen and fragment D-D of cross-linked fibrin.
    Marder VJ; Budzynski AZ; Barlow GH
    Biochim Biophys Acta; 1976 Mar; 427(1):1-14. PubMed ID: 130927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmic degradation of human fibrinogen. III. Molecular model of the plasmin-resistant disulfide knot in monomeric fragment D.
    Furlan M; Kemp G; Beck EA
    Biochim Biophys Acta; 1975 Jul; 400(1):95-111. PubMed ID: 125109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic demonstration of high molecular weight fibrin degradation products persisting in chronic subdural hematomas.
    Toyosawa M; Kashiwagi S; Pei W; Fujisawa H; Ito H; Nakamura K
    Electrophoresis; 1997 Jan; 18(1):118-21. PubMed ID: 9059832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progressive exposure of E-neoantigen associated with degradation of crosslinked fibrin by plasmin in vitro.
    Stegnar M; Chen JP
    Thromb Haemost; 1984 Dec; 52(3):315-20. PubMed ID: 6241755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effect of divalent cations in the plasmin degradation of fibrinogen.
    Dang CV; Bell WR; Ebert RF; Starksen NF
    Arch Biochem Biophys; 1985 May; 238(2):452-7. PubMed ID: 3158281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural difference between polymerized and non-polymerized fragment X, obtained by plasmin digest of fibrinogen.
    Sato H; Swadesh JK
    Int J Biol Macromol; 1993 Dec; 15(6):323-7. PubMed ID: 8110652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding phenomena of isolated unique plasmic degradation products of human cross-linked fibrin.
    Olexa SA; Budzynski AZ
    J Biol Chem; 1979 Jun; 254(11):4925-32. PubMed ID: 155698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractionation of plasmic fibrinogen digest on lysine-agarose. Isolation of two fragments D, fragment E and simultaneous removal of plasmin.
    Rupp C; Sievi R; Furlan M
    Thromb Res; 1982 Jul; 27(1):117-21. PubMed ID: 6214865
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.