BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1478281)

  • 1. Light stimulates in vivo inositol lipid turnover in frog retinal pigment epithelial cells at the onset of shedding and phagocytosis of photoreceptor membranes.
    Rodriguez de Turco EB; Gordon WC; Bazan NG
    Exp Eye Res; 1992 Nov; 55(5):719-25. PubMed ID: 1478281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of photoreceptor outer segment disk shedding on myeloid body formation in the retinal pigment epithelium of the leopard frog.
    Cai F; Dickson DH
    Curr Eye Res; 1993 Jan; 12(1):61-8. PubMed ID: 8436012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis.
    Gordon WC; Rodriguez de Turco EB; Bazan NG
    Curr Eye Res; 1992 Jan; 11(1):73-83. PubMed ID: 1532774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism in frog retinal pigment epithelium of docosahexaenoic and arachidonic acids derived from rod outer segment membranes.
    Chen H; Anderson RE
    Exp Eye Res; 1993 Sep; 57(3):369-77. PubMed ID: 8224024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Docosahexaenoic acid increases in frog retinal pigment epithelium following rod photoreceptor shedding.
    Chen H; Wiegand RD; Koutz CA; Anderson RE
    Exp Eye Res; 1992 Jul; 55(1):93-100. PubMed ID: 1397136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IP3 generation increases rod outer segment phagocytosis by cultured Royal College of Surgeons retinal pigment epithelium.
    Heth CA; Marescalchi PA; Ye L
    Invest Ophthalmol Vis Sci; 1995 May; 36(6):984-9. PubMed ID: 7730032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inositol triphosphate generation in cultured rat retinal pigment epithelium.
    Heth CA; Marescalchi PA
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):409-16. PubMed ID: 8112988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreceptor shedding is initiated by light in the frog retina.
    Basinger S; Hoffman R; Matthes M
    Science; 1976 Dec; 194(4269):1074-6. PubMed ID: 1086510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light induces a rapid and transient increase in inositol-trisphosphate in toad rod outer segments.
    Brown JE; Blazynski C; Cohen AI
    Biochem Biophys Res Commun; 1987 Aug; 146(3):1392-6. PubMed ID: 3113434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphosphoinositide hydrolysis in response to light stimulation of rat and chick retina and retinal rod outer segments.
    Millar FA; Fisher SC; Muir CA; Edwards E; Hawthorne JN
    Biochim Biophys Acta; 1988 Jun; 970(2):205-11. PubMed ID: 2838096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of [3H]docosahexaenoic acid trafficking through photoreceptors and retinal pigment epithelium by electron microscopic autoradiography.
    Gordon WC; Bazan NG
    Invest Ophthalmol Vis Sci; 1993 Jul; 34(8):2402-11. PubMed ID: 8325748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions.
    Sun M; Finnemann SC; Febbraio M; Shan L; Annangudi SP; Podrez EA; Hoppe G; Darrow R; Organisciak DT; Salomon RG; Silverstein RL; Hazen SL
    J Biol Chem; 2006 Feb; 281(7):4222-30. PubMed ID: 16354659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Phosphoinositide turnover and Ca2+ mobilization during phagocytosis in cultured chick retinal pigment epithelial cells].
    Nakashima S; Tsunematsu Y; Nozawa Y
    Nippon Ganka Gakkai Zasshi; 1989 Jan; 93(1):149-54. PubMed ID: 2546408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-fracture study of filipin binding in photoreceptor outer segments and pigment epithelium of dystrophic and normal retinas.
    Caldwell RB; McLaughlin BJ
    J Comp Neurol; 1985 Jun; 236(4):523-37. PubMed ID: 4056101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of inositol phosphate formation in cultured human retinal pigment epithelium.
    Crook RB; Song MK; Tong LP; Yabu JM; Polansky JR; Lui GM
    Brain Res; 1992 Jun; 583(1-2):23-30. PubMed ID: 1380397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal detachment in the cat: the pigment epithelial-photoreceptor interface.
    Anderson DH; Stern WH; Fisher SK; Erickson PA; Borgula GA
    Invest Ophthalmol Vis Sci; 1983 Jul; 24(7):906-26. PubMed ID: 6862795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultimate fate of rod outer segments in the retinal pigment epithelium.
    Thumann G; Bartz-Schmidt KU; Kociok N; Heimann K; Schraemeyer U
    Pigment Cell Res; 1999 Oct; 12(5):311-5. PubMed ID: 10541040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of osmotic and light stimulation on 3H-taurine efflux from isolated rod outer segments and synthesis of tauret in the frog retina.
    Petrosian AM; Haroutounian JE; Fugelli K; Kanli H
    Adv Exp Med Biol; 2000; 483():441-51. PubMed ID: 11787629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipase C activity and substrate specificity in frog photoreceptors.
    Tarver AP; Anderson RE
    Exp Eye Res; 1988 Jan; 46(1):29-35. PubMed ID: 2830127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of leukotrienes in frog retina and retinal pigment epithelium.
    Bazan NG; Bazan HE; Birkle DL; Rossowska M
    J Neurosci Res; 1987; 18(4):591-6. PubMed ID: 3125344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.