BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 1478673)

  • 1. Breakpoints in Robertsonian translocations are localized to satellite III DNA by fluorescence in situ hybridization.
    Gravholt CH; Friedrich U; Caprani M; Jørgensen AL
    Genomics; 1992 Dec; 14(4):924-30. PubMed ID: 1478673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for structural heterogeneity from molecular cytogenetic analysis of dicentric Robertsonian translocations.
    Sullivan BA; Jenkins LS; Karson EM; Leana-Cox J; Schwartz S
    Am J Hum Genet; 1996 Jul; 59(1):167-75. PubMed ID: 8659523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Robertsonian translocations by using fluorescence in situ hybridization.
    Wolff DJ; Schwartz S
    Am J Hum Genet; 1992 Jan; 50(1):174-81. PubMed ID: 1729886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cytogenetic characterization of 17 rob(13q14q) Robertsonian translocations by FISH, narrowing the region containing the breakpoints.
    Han JY; Choo KH; Shaffer LG
    Am J Hum Genet; 1994 Nov; 55(5):960-7. PubMed ID: 7977359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-color fish analysis of breakpoints on Robertsonian translocations.
    Takahashi Y; Fujita H; Nakamura Y; Kurahashi H
    Jpn J Hum Genet; 1997 Dec; 42(4):517-23. PubMed ID: 9560951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centromeric alpha-satellite DNA break in reciprocal translocations.
    Wang JC; Hajianpour A; Habibian R
    Cytogenet Genome Res; 2009; 125(4):329-33. PubMed ID: 19864896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations.
    Choo KH; Vissel B; Brown R; Filby RG; Earle E
    Nucleic Acids Res; 1988 Feb; 16(4):1273-84. PubMed ID: 2831495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence in situ hybridization reveals a break in the alpha-satellite DNA of chromosome 1 in a family with a balanced whole-arm translocation.
    Gravholt CH; Caprani M; Friedrich U
    Hum Genet; 1994 Nov; 94(5):504-8. PubMed ID: 7959684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres.
    Sullivan BA; Schwartz S
    Hum Mol Genet; 1995 Dec; 4(12):2189-97. PubMed ID: 8634687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the origin of centromeres in whole-arm translocations using fluorescent in situ hybridization with alpha-satellite DNA probes.
    Tharapel AT; Qumsiyeh MB; Martens PR; Tharapel SA; Dalton JD; Ward JC; Wilroy RS
    Am J Med Genet; 1991 Jul; 40(1):117-20. PubMed ID: 1887840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization].
    Solov'ev IV; Iurov IuB; Vorsanova SG; Marcais B; Rogaev EI; Kapanadze BI; Brodianskiĭ VM; Iankovskiĭ NK; Roizes G
    Genetika; 1998 Nov; 34(11):1470-9. PubMed ID: 10096024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite DNA sequences in the human acrocentric chromosomes: information from translocations and heteromorphisms.
    Gosden JR; Lawrie SS; Gosden CM
    Am J Hum Genet; 1981 Mar; 33(2):243-51. PubMed ID: 6163355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cytogenetic evidence to characterize breakpoint regions in Robertsonian translocations.
    Cheung SW; Sun L; Featherstone T
    Cytogenet Cell Genet; 1990; 54(3-4):97-102. PubMed ID: 2265566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alphoid DNA diversity of a so-called monocentric Robertsonian fusion.
    Luke S; Aggarwal G; Stetka DG; Verma RS
    Chromosome Res; 1994 Jan; 2(1):73-5. PubMed ID: 8162324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of DNA sequences flanking the breakpoint of human t(14q21q) Robertsonian translocations.
    Earle E; Shaffer LG; Kalitsis P; McQuillan C; Dale S; Choo KH
    Am J Hum Genet; 1992 Apr; 50(4):717-24. PubMed ID: 1550117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle.
    Chaves R; Adega F; Heslop-Harrison JS; Guedes-Pinto H; Wienberg J
    Chromosome Res; 2003; 11(7):641-8. PubMed ID: 14606626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breakpoint diversity illustrates distinct mechanisms for Robertsonian translocation formation.
    Page SL; Shin JC; Han JY; Choo KH; Shaffer LG
    Hum Mol Genet; 1996 Sep; 5(9):1279-88. PubMed ID: 8872467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chromosome 13-specific human satellite I DNA subfamily with minor presence on chromosome 21: further studies on Robertsonian translocations.
    Kalitsis P; Earle E; Vissel B; Shaffer LG; Choo KH
    Genomics; 1993 Apr; 16(1):104-12. PubMed ID: 8486347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narrowing the localization of the region breakpoint in most frequent Robertsonian translocations.
    Jarmuz-Szymczak M; Janiszewska J; Szyfter K; Shaffer LG
    Chromosome Res; 2014 Dec; 22(4):517-32. PubMed ID: 25179263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unbalanced 1q whole-arm translocation resulting in der(14)t(1;14)(q11-12;p11) in myelodysplastic syndrome.
    Fogu G; Campus PM; Cambosu F; Moro MA; Sanna R; Fozza C; Nieddu RM; Longinotti M; Montella A
    Cytogenet Genome Res; 2012; 136(4):256-63. PubMed ID: 22571950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.