BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1478954)

  • 1. Induction of dystrophin localization in cultured Xenopus muscle cells by latex beads.
    Peng HB; Chen Q
    J Cell Sci; 1992 Oct; 103 ( Pt 2)():551-63. PubMed ID: 1478954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protein homologous to the Torpedo postsynaptic 58K protein is present at the myotendinous junction.
    Chen Q; Sealock R; Peng HB
    J Cell Biol; 1990 Jun; 110(6):2061-71. PubMed ID: 2112550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between talin and acetylcholine receptor clusters in Xenopus muscle cells.
    Rochlin MW; Chen QM; Tobler M; Turner CE; Burridge K; Peng HB
    J Cell Sci; 1989 Mar; 92 ( Pt 3)():461-72. PubMed ID: 2512307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of postsynaptic specializations induced by latex beads in cultured muscle cells.
    Peng HB; Cheng PC
    J Neurosci; 1982 Dec; 2(12):1760-74. PubMed ID: 7143050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration of pp125 focal adhesion kinase (FAK) at the myotendinous junction.
    Baker LP; Daggett DF; Peng HB
    J Cell Sci; 1994 Jun; 107 ( Pt 6)():1485-97. PubMed ID: 7525620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A light and electron microscopic study of dystrophin localization at the mouse neuromuscular junction.
    Huard J; Fortier LP; Dansereau G; Labrecque C; Tremblay JP
    Synapse; 1992 Feb; 10(2):83-93. PubMed ID: 1585259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HGF induction of postsynaptic specializations at the neuromuscular junction.
    Madhavan R; Peng HB
    J Neurobiol; 2006 Feb; 66(2):134-47. PubMed ID: 16215993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of lateral migration in the formation of acetylcholine receptor clusters induced by basic polypeptide-coated latex beads.
    Peng HB; Zhao DY; Xie MZ; Shen ZW; Jacobson K
    Dev Biol; 1989 Jan; 131(1):197-206. PubMed ID: 2909404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of acetylcholinesterase induced by basic polypeptide-coated latex beads in cultured Xenopus muscle cells.
    Peng HB; Gao KX; Xie MZ; Zhao DY
    Dev Biol; 1988 Jun; 127(2):452-5. PubMed ID: 3378675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of cortactin with developing neuromuscular specializations.
    Peng HB; Xie H; Dai Z
    J Neurocytol; 1997 Oct; 26(10):637-50. PubMed ID: 9368878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of acetylcholine receptor clustering by native polystyrene beads. Implication of an endogenous muscle-derived signalling system.
    Baker LP; Chen Q; Peng HB
    J Cell Sci; 1992 Jul; 102 ( Pt 3)():543-55. PubMed ID: 1380514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of calcitonin gene-related peptide (CGRP) immunoreactivity in relationship to the formation of neuromuscular junctions in Xenopus myotomal muscle.
    Peng HB; Chen QM; de Biasi S; Zhu DL
    J Comp Neurol; 1989 Dec; 290(4):533-43. PubMed ID: 2613943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dystrophin as a focal adhesion protein. Collocalization with talin and the Mr 48,000 sarcolemmal protein in cultured Xenopus muscle.
    Kramarcy NR; Sealock R
    FEBS Lett; 1990 Nov; 274(1-2):171-4. PubMed ID: 2123804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction.
    Anderson MJ; Klier FG; Tanguay KE
    J Cell Biol; 1984 Nov; 99(5):1769-84. PubMed ID: 6386827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle.
    Ohlendieck K; Ervasti JM; Matsumura K; Kahl SD; Leveille CJ; Campbell KP
    Neuron; 1991 Sep; 7(3):499-508. PubMed ID: 1654951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of dystrophin relative to acetylcholine receptor domains in electric tissue and adult and cultured skeletal muscle.
    Sealock R; Butler MH; Kramarcy NR; Gao KX; Murnane AA; Douville K; Froehner SC
    J Cell Biol; 1991 Jun; 113(5):1133-44. PubMed ID: 2040646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve.
    Peng HB
    J Neurosci; 1986 Feb; 6(2):581-9. PubMed ID: 3950711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the postsynaptic membrane in Xenopus neuromuscular cultures observed by freeze-fracture and thin-section electron microscopy.
    Peng HB; Nakajima Y; Bridgman PC
    Brain Res; 1980 Aug; 196(1):11-31. PubMed ID: 7397516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase in intracellular calcium induced by the polycation-coated latex bead, a stimulus that causes postsynaptic-type differentiation in cultured Xenopus muscle cells.
    Zhu DL; Peng HB
    Dev Biol; 1988 Mar; 126(1):63-70. PubMed ID: 3342936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different distributions of dystrophin and related proteins at nerve-muscle junctions.
    Bewick GS; Nicholson LV; Young C; O'Donnell E; Slater CR
    Neuroreport; 1992 Oct; 3(10):857-60. PubMed ID: 1421088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.