These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 1479205)

  • 1. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters.
    Leybovich LB; Myerson RJ; Emami B; Straube WL
    Int J Hyperthermia; 1991; 7(6):917-35. PubMed ID: 1806645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power.
    Kaatee RS; Crezee J; Kanis AP; Lagendijk JJ; Levendag PC; Visser AG
    Phys Med Biol; 1997 Jun; 42(6):1087-108. PubMed ID: 9194130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental investigations of a newly developed intracavitary applicator system for the radiothermotherapy of gynaecological tumours.
    Zimmermann M; Schorcht J; Andree W
    Int J Hyperthermia; 1993; 9(3):463-77. PubMed ID: 8515148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current sheet applicator arrays for superficial hyperthermia of chestwall lesions.
    Gopal MK; Hand JW; Lumori ML; Alkhairi S; Paulsen KD; Cetas TC
    Int J Hyperthermia; 1992; 8(2):227-40. PubMed ID: 1573312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia.
    Hiraki Y; Nakajo M; Takeshita T; Churei H
    Int J Hyperthermia; 2000; 16(3):205-18. PubMed ID: 10830584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The polyacrylamide as a phantom material for electromagnetic hyperthermia studies.
    Bini MG; Ignesti A; Millanta L; Olmi R; Rubino N; Vanni R
    IEEE Trans Biomed Eng; 1984 Mar; 31(3):317-22. PubMed ID: 6715003
    [No Abstract]   [Full Text] [Related]  

  • 10. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment.
    Kouloulias V; Karanasiou I; Giamalaki M; Matsopoulos G; Kouvaris J; Kelekis N; Uzunoglu N
    Int J Hyperthermia; 2015 Feb; 31(1):23-32. PubMed ID: 25578580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heating characteristics of the TRIPAS hyperthermia system for deep seated malignancy.
    Surowiec A; Bicher HI
    J Microw Power Electromagn Energy; 1995; 30(3):135-40. PubMed ID: 7472918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phantom characterization of applicators by liquid-crystal-plate dosimetry.
    Andreuccetti D; Bini M; Ignesti A; Olmi R; Vanni R
    Int J Hyperthermia; 1991; 7(1):175-83. PubMed ID: 2051071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators.
    Neuman DG; Stauffer PR; Jacobsen S; Rossetto F
    Int J Hyperthermia; 2002; 18(3):180-93. PubMed ID: 12028636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiral microstrip hyperthermia applicators: technical design and clinical performance.
    Samulski TV; Fessenden P; Lee ER; Kapp DS; Tanabe E; McEuen A
    Int J Radiat Oncol Biol Phys; 1990 Jan; 18(1):233-42. PubMed ID: 2298626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of heating patterns of microwave interstitial applicators using miniature electric field and fluoroptic temperature probes.
    Babij TM; Hagmann MJ; Gottlieb CF; Abitbol AA; Lewin AA; Schwade JG; Houdek PV
    Int J Hyperthermia; 1991; 7(3):485-92. PubMed ID: 1919143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model.
    Heinzl L; Hunt JW; Bernstein M
    Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A water-cooled EM applicator radiating in a phantom equivalent tissue--experiments and numerical analysis.
    Gentili GB; Gori F; Lachi L; Leoncini M
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):924-8. PubMed ID: 1743741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of specific absorption rate distribution using capacitive electrodes and inductive aperture-type applicators: implications for radiofrequency hyperthermia.
    Kato H; Hand JW; Prior MV; Furukawa M; Yamamoto O; Ishida T
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):644-7. PubMed ID: 1879856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.