These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 1479206)
21. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom. Gellermann J; Wlodarczyk W; Ganter H; Nadobny J; Fähling H; Seebass M; Felix R; Wust P Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):267-77. PubMed ID: 15629620 [TBL] [Abstract][Full Text] [Related]
22. Stanford 3D hyperthermia treatment planning system. Technical review and clinical summary. Sullivan DM; Ben-Yosef R; Kapp DS Int J Hyperthermia; 1993; 9(5):627-43. PubMed ID: 8245576 [TBL] [Abstract][Full Text] [Related]
23. Microstrip-antenna design for hyperthermia treatment of superficial tumors. Montecchia F IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439 [TBL] [Abstract][Full Text] [Related]
24. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy. Du Y; Zhang L; Sang L; Wu D Technol Health Care; 2016 Apr; 24 Suppl 2():S675-82. PubMed ID: 27177098 [TBL] [Abstract][Full Text] [Related]
25. The CDRH Helix: an in vivo evaluation. Anhalt D; Hynynen K; DeYoung D; Shimm D; Kundrat M; Cetas T Int J Hyperthermia; 1990; 6(1):241-52. PubMed ID: 2299236 [TBL] [Abstract][Full Text] [Related]
26. Regional hyperthermia of the abdomen in conjunction with chemotherapy for peritoneal carcinomatosis: evaluation of two annular-phased-array applicators. Cho C; Wust P; Hildebrandt B; Issels RD; Sehouli J; Kerner T; Deja M; Budach V; Gellermann J Int J Hyperthermia; 2008 Aug; 24(5):399-408. PubMed ID: 18608591 [TBL] [Abstract][Full Text] [Related]
27. Two 27 MHz Simple Inductive Loops, as Hyperthermia Treatment Applicators: Theoretical Analysis and Development. Kouloulias V; Karanasiou I; Koutsoupidou M; Matsopoulos G; Kouvaris J; Uzunoglu N Comput Math Methods Med; 2015; 2015():751035. PubMed ID: 26649070 [TBL] [Abstract][Full Text] [Related]
28. Non-invasive electromagnetic heating techniques and the operational characteristics of the annular phased array. Gibbs FA Front Radiat Ther Oncol; 1984; 18():56-61. PubMed ID: 6706138 [No Abstract] [Full Text] [Related]
29. Enhanced Energy Localization in Hyperthermia Treatment Based on Hybrid Electromagnetic and Ultrasonic System: Proof of Concept with Numerical Simulations. Nizam-Uddin N; Elshafiey I Biomed Res Int; 2017; 2017():5787484. PubMed ID: 28840125 [TBL] [Abstract][Full Text] [Related]
30. Scanning E-field sensor device for online measurements in annular phased-array systems. Wust P; Berger J; Fähling H; Nadobny J; Gellermann J; Tilly W; Rau B; Petermann K; Felix R Int J Radiat Oncol Biol Phys; 1999 Mar; 43(4):927-37. PubMed ID: 10098449 [TBL] [Abstract][Full Text] [Related]
31. Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Kosterev VV; Kramer-Ageev EA; Mazokhin VN; van Rhoon GC; Crezee J Int J Hyperthermia; 2015 Jun; 31(4):443-52. PubMed ID: 25875224 [TBL] [Abstract][Full Text] [Related]
32. Theoretical and experimental comparison of three types of electromagnetic hyperthermia applicator. Johnson RH; Preece AW; Green JL Phys Med Biol; 1990 Jun; 35(6):761-79. PubMed ID: 2367546 [TBL] [Abstract][Full Text] [Related]
33. Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. De Leeuw AA; Crezee J; Lagendijk JJ Int J Hyperthermia; 1993; 9(5):685-97. PubMed ID: 8245580 [TBL] [Abstract][Full Text] [Related]
34. Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques. Cheung AY; Neyzari A Cancer Res; 1984 Oct; 44(10 Suppl):4736s-4744s. PubMed ID: 6467228 [TBL] [Abstract][Full Text] [Related]
35. [The influencing factors and interfering effects in the control of the power distributions with the BSD-20000 hyperthermia ring system. 1. The clinical observables and phantom measurements]. Wust P; Nadobny J; Fähling H; Riess H; Koch K; John W; Felix R Strahlenther Onkol; 1990 Dec; 166(12):822-30. PubMed ID: 2267660 [TBL] [Abstract][Full Text] [Related]
36. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots. Kok HP; Korshuize-van Straten L; Bakker A; de Kroon-Oldenhof R; Geijsen ED; Stalpers LJA; Crezee J Int J Radiat Oncol Biol Phys; 2017 Nov; 99(4):1039-1047. PubMed ID: 28870786 [TBL] [Abstract][Full Text] [Related]
37. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment. Kouloulias V; Karanasiou I; Giamalaki M; Matsopoulos G; Kouvaris J; Kelekis N; Uzunoglu N Int J Hyperthermia; 2015 Feb; 31(1):23-32. PubMed ID: 25578580 [TBL] [Abstract][Full Text] [Related]
38. Benefits of superficial hyperthermia treatment planning: five case studies. de Bruijne M; Wielheesen DH; van der Zee J; Chavannes N; van Rhoon GC Int J Hyperthermia; 2007 Aug; 23(5):417-29. PubMed ID: 17701533 [TBL] [Abstract][Full Text] [Related]
39. Theoretical electric field distributions produced by three types of regional hyperthermia devices in a three-dimensional homogeneous model of man. Paulsen KD; Strohbehn JW; Lynch DR IEEE Trans Biomed Eng; 1988 Jan; 35(1):36-45. PubMed ID: 3338810 [No Abstract] [Full Text] [Related]
40. Experimental characterization of the miniannular phased array as a hyperthermia applicator. Guerquin-Kern JL; Hagmann MJ; Levin RL Med Phys; 1987; 14(4):674-80. PubMed ID: 3627010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]