These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 1479451)
1. Primary motor cortical responses to perturbations of prehension in the monkey. Picard N; Smith AM J Neurophysiol; 1992 Nov; 68(5):1882-94. PubMed ID: 1479451 [TBL] [Abstract][Full Text] [Related]
2. Primary motor cortical activity related to the weight and texture of grasped objects in the monkey. Picard N; Smith AM J Neurophysiol; 1992 Nov; 68(5):1867-81. PubMed ID: 1479450 [TBL] [Abstract][Full Text] [Related]
3. Responses of cerebellar Purkinje cells to slip of a hand-held object. Dugas C; Smith AM J Neurophysiol; 1992 Mar; 67(3):483-95. PubMed ID: 1578241 [TBL] [Abstract][Full Text] [Related]
4. Activity in rostral motor cortex in response to predictable force-pulse perturbations in a precision grip task. Boudreau MJ; Smith AM J Neurophysiol; 2001 Sep; 86(3):1079-85. PubMed ID: 11535658 [TBL] [Abstract][Full Text] [Related]
5. Neuronal activity in somatosensory cortex of monkeys using a precision grip. III. Responses to altered friction perturbations. Salimi I; Brochier T; Smith AM J Neurophysiol; 1999 Feb; 81(2):845-57. PubMed ID: 10036285 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey. Cadoret G; Smith AM J Neurophysiol; 1997 Jan; 77(1):153-66. PubMed ID: 9120556 [TBL] [Abstract][Full Text] [Related]
7. Activity in ventral and dorsal premotor cortex in response to predictable force-pulse perturbations in a precision grip task. Boudreau MJ; Brochier T; Paré M; Smith AM J Neurophysiol; 2001 Sep; 86(3):1067-78. PubMed ID: 11535657 [TBL] [Abstract][Full Text] [Related]
8. Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights. Espinoza E; Smith AM J Neurophysiol; 1990 Sep; 64(3):698-714. PubMed ID: 2230918 [TBL] [Abstract][Full Text] [Related]
9. Neuronal activity in somatosensory cortex of monkeys using a precision grip. II. Responses To object texture and weights. Salimi I; Brochier T; Smith AM J Neurophysiol; 1999 Feb; 81(2):835-44. PubMed ID: 10036284 [TBL] [Abstract][Full Text] [Related]
10. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Johansson RS; Westling G Exp Brain Res; 1987; 66(1):141-54. PubMed ID: 3582528 [TBL] [Abstract][Full Text] [Related]
11. Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. Monzée J; Smith AM J Neurophysiol; 2004 Mar; 91(3):1230-9. PubMed ID: 14681334 [TBL] [Abstract][Full Text] [Related]
12. Cortical mechanisms underlying tactile discrimination in the monkey. I. Role of primary somatosensory cortex in passive texture discrimination. Tremblay F; Ageranioti-Bélanger SA; Chapman CE J Neurophysiol; 1996 Nov; 76(5):3382-403. PubMed ID: 8930280 [TBL] [Abstract][Full Text] [Related]
13. Input-output properties of hand-related cells in the ventral cingulate cortex in the monkey. Cadoret G; Smith AM J Neurophysiol; 1995 Jun; 73(6):2584-90. PubMed ID: 7666165 [TBL] [Abstract][Full Text] [Related]
14. Time-varying enhancement of human cortical excitability mediated by cutaneous inputs during precision grip. Johansson RS; Lemon RN; Westling G J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):761-75. PubMed ID: 7707242 [TBL] [Abstract][Full Text] [Related]
15. Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task. II. Area 2 as compared to areas 3b and 1. Ageranioti-Bélanger SA; Chapman CE Exp Brain Res; 1992; 91(2):207-28. PubMed ID: 1459224 [TBL] [Abstract][Full Text] [Related]
16. Modulation of corticospinal influence over hand muscles during gripping tasks in man and monkey. Lemon RN; Johansson RS; Westling G Can J Physiol Pharmacol; 1996 Apr; 74(4):547-58. PubMed ID: 8828899 [TBL] [Abstract][Full Text] [Related]
17. Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task. I. Areas 3b and 1. Chapman CE; Ageranioti-Bélanger SA Exp Brain Res; 1991; 87(2):319-39. PubMed ID: 1769386 [TBL] [Abstract][Full Text] [Related]
18. Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns. Salimi I; Brochier T; Smith AM J Neurophysiol; 1999 Feb; 81(2):825-34. PubMed ID: 10036283 [TBL] [Abstract][Full Text] [Related]
19. Grip responses to object load perturbations are stimulus and phase sensitive. Mrotek LA; Hart BA; Schot PK; Fennigkoh L Exp Brain Res; 2004 Apr; 155(4):413-20. PubMed ID: 14689141 [TBL] [Abstract][Full Text] [Related]
20. Neurophysiology of prehension. II. Response diversity in primary somatosensory (S-I) and motor (M-I) cortices. Gardner EP; Ro JY; Babu KS; Ghosh S J Neurophysiol; 2007 Feb; 97(2):1656-70. PubMed ID: 17093113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]