These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 14795757)

  • 1. Production of bacterial variants in vitro with chloramphenicol and specific antiserum.
    VOUREKA A
    Lancet; 1951 Jan; 1(6645):29-31. PubMed ID: 14795757
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of chloramphenicol and specific antiserum on the variability of the K 12 strain of Bact. coli.
    MANTEN A; ROWLEY D
    Br J Exp Pathol; 1953 Feb; 34(1):23-6. PubMed ID: 13032328
    [No Abstract]   [Full Text] [Related]  

  • 3. In vitro study of the action of a tetracycline-oleandomycin preparation. Tetracycline, oleandomycin, and chloramphenicol on Staphylococcus, Escherichia coli, and Klebsiella.
    YAZIGI R; VIGOUROUX J; MORENO Y
    Antibiot Annu; 1959-1960; 7():839-42. PubMed ID: 13846497
    [No Abstract]   [Full Text] [Related]  

  • 4. In vitro sensitivity of Escherichia coli to antibiotics and nitrofurans.
    GLANTZ PJ
    Cornell Vet; 1962 Oct; 52():552-62. PubMed ID: 13948347
    [No Abstract]   [Full Text] [Related]  

  • 5. [DETERMINATION OF THE EFFECT OF THE COMBINATION OF PENICILLIN WITH CHLORAMPHENICOL IN VITRO WITH REFERENCE TO TREATMENT OF GYNECOLOGIC INFLAMMATIONS].
    PODIVINSKA I; HLAVA H
    Cesk Gynekol; 1964 Apr; 29():220-5. PubMed ID: 14146889
    [No Abstract]   [Full Text] [Related]  

  • 6. [Research on simple structures analogous to chloromycetin. Analogy of action, in vitro, of serine, phenyleserine and chloromycetine on E. coli].
    MENTZER C; MEUNIER P; MOLHO-LACROIX L; BILLET D
    Bull Soc Chim Biol (Paris); 1950; 32(1-2):55-65. PubMed ID: 15420576
    [No Abstract]   [Full Text] [Related]  

  • 7. A multiple-antibiotic resistance-independent active chloramphenicol efflux in an Escherichia coli clinical isolate.
    Bellaaj A; Mallea M; Bollet C; Belhadj C; Belhadj O; Ben-Mahrez K
    Drugs Exp Clin Res; 2002; 28(2-3):99-104. PubMed ID: 12224384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMERGENCE OF ANTIBIOTIC-RESISTANT ESCHERICHIA COLI IN A CLOSED-POPULATION WHEN CHLORAMPHENICOL WAS USED EXTENSIVELY.
    DEVETSKI R; TILLMAN P; NORSEN J; LEPPER M
    Antimicrob Agents Chemother (Bethesda); 1963; 161():714-20. PubMed ID: 14274990
    [No Abstract]   [Full Text] [Related]  

  • 9. Efflux of chloramphenicol by the CmlA1 protein.
    George AM; Hall RM
    FEMS Microbiol Lett; 2002 Apr; 209(2):209-13. PubMed ID: 12007807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of chloramphenicol and its acetylated derivatives to Escherichia coli ribosomal subunits.
    Piffaretti JC; Froment Y
    Chemotherapy; 1978; 24(1):24-8. PubMed ID: 338265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. POSSIBLE CAUSES OF LEUCINE INHIBITION IN ESCHERICHIA COLI K-12 GAMMA-28.
    HORVATH I; GADO I
    Acta Microbiol Acad Sci Hung; 1965; 12():103-7. PubMed ID: 14345168
    [No Abstract]   [Full Text] [Related]  

  • 12. Chloramphenicol-sensitive Escherichia coli strain expressing the chloramphenicol acetyltransferase (cat) gene.
    Potrykus J; Wegrzyn G
    Antimicrob Agents Chemother; 2001 Dec; 45(12):3610-2. PubMed ID: 11709351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli.
    Bischoff KM; White DG; Hume ME; Poole TL; Nisbet DJ
    FEMS Microbiol Lett; 2005 Feb; 243(1):285-91. PubMed ID: 15668031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of the acrA gene is partially responsible for chloramphenicol sensitivity of Escherichia coli CM2555 strain expressing the chloramphenicol acetyltransferase gene.
    Potrykus J; BaraƄska S; Wegrzyn G
    Microb Drug Resist; 2002; 8(3):179-85. PubMed ID: 12363006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Antibacterial activity and inactivation of chloramphenicol in regard to a resistant strain of Escherichia coli selected rapidly and slowly].
    SANTARATO R
    Boll Soc Ital Biol Sper; 1951 Dec; 27(12):1788-91. PubMed ID: 14934969
    [No Abstract]   [Full Text] [Related]  

  • 16. MECHANISM OF CHLORAMPHENICOL AND TETRACYCLINE RESISTANCE IN ESCHERICHIA COLI.
    OKAMOTO S; MIZUNO D
    J Gen Microbiol; 1964 Apr; 35():125-33. PubMed ID: 14171256
    [No Abstract]   [Full Text] [Related]  

  • 17. [Site-directed mutagenesis and promoter functional analysis of RM07 DNA fragment from Halobacterium halobium in Escherichia coli].
    Yang Y; Ping S
    Yi Chuan Xue Bao; 2004 May; 31(5):525-32. PubMed ID: 15478616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [RIBOSOME PRECURSORS IN NORMAL AND CHLORAMPHENICOL-INHIBITED E. COLI].
    LINDIGKEIT R; HANDSCHACK W; COUTELLE R
    Acta Biol Med Ger; 1964; 13():438-42. PubMed ID: 14251839
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on the action of antibiotics on bacterial metabolism. II. Effect of dihydrostreptomycin, chloramphenicol and oxytetracycline upon the aerobic carbohydrate metabolism by Escherichia coli.
    KATAGIRI H; SUZUKI Y; TOCHIKURA T
    J Antibiot (Tokyo); 1960 May; 13():155-63. PubMed ID: 13830894
    [No Abstract]   [Full Text] [Related]  

  • 20. [Research on the fixation of chloramphenicol by Escherichia coli].
    CESSI C
    Riv Ital Ig; 1951; 11(3-4):114-7. PubMed ID: 14865780
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.