These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 14795757)

  • 21. Combined action of (1) penicillin and viomycin and (2) chloromycetin and viomycin: in vitro studies.
    CHOPRA IC; KHAJURIA BN
    Indian J Med Res; 1955 Jan; 43(1):129-38. PubMed ID: 13242136
    [No Abstract]   [Full Text] [Related]  

  • 22. [Cyclic 3',5'-adenosine monophosphate stimulation of chloramphenicol-acetyltransferase synthesis in bacterial cellular systems].
    Boĭchenko MN; Aniskin ED
    Biull Eksp Biol Med; 1975 Oct; 80(10):65-6. PubMed ID: 179643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered short branched-chain acyl-CoA synthesis in E. coli and acylation of chloramphenicol to branched-chain derivatives.
    Bi H; Bai Y; Cai T; Zhuang Y; Liang X; Zhang X; Liu T; Ma Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10339-48. PubMed ID: 24100682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of high-level resistance to chloramphenicol in different Escherichia coli variants.
    Sompolinsky D; Samra Z
    J Gen Microbiol; 1968 Jan; 50(1):55-66. PubMed ID: 4865479
    [No Abstract]   [Full Text] [Related]  

  • 25. [A POSSIBLE MECHANISM OF ACQUIRED RESISTANCE IN ESCHERICHIA COLI TO CHLORAMPHENICOL].
    KOROTIAEV AI
    Mikrobiologiia; 1963; 32():785-91. PubMed ID: 14053508
    [No Abstract]   [Full Text] [Related]  

  • 26. Studies on the action of antibiotics on bacterial metabolism. I. Effect of dihydrostreptomycin or chloramphenicol on alpha-ketoglutarate fermentation by Escherichia coli or Pseudomonas fluorescens.
    KATAGIRI H; SUZUKI Y; TOCHIKURA T
    J Antibiot (Tokyo); 1959 Jul; 12():160-8. PubMed ID: 13853315
    [No Abstract]   [Full Text] [Related]  

  • 27. Michaelis-Menten constant of beta-galactosidase in chloramphenicol-sensitive and chloramphenicol-resistant Escherichia coli as determined with intact cells and cell-free extract.
    HORIUCHI T; MIZUNO D
    Jpn J Med Sci Biol; 1959 Jun; 12():163-5. PubMed ID: 14403111
    [No Abstract]   [Full Text] [Related]  

  • 28. Chloramphenicol resistance in clinical isolates of enterobacteria: characterization of chloramphenicol acetyltransferases.
    Rivera MJ; Cabello A; Gomez-Lus R
    J Chemother; 1989 Jul; 1(4 Suppl):309-10. PubMed ID: 16312415
    [No Abstract]   [Full Text] [Related]  

  • 29. ACTION OF THE PHTHALANILIDE DRUGS ON ESCHERICHIA COLI.
    PINE MJ; HARZEWSKI E; WISSLER FC
    Cancer Res; 1963 Jul; 23():932-7. PubMed ID: 14079160
    [No Abstract]   [Full Text] [Related]  

  • 30. The acrAB locus is involved in modulating intracellular acetyl coenzyme A levels in a strain of Escherichia coli CM2555 expressing the chloramphenicol acetyltransferase (cat) gene.
    Potrykus J; Wegrzyn G
    Arch Microbiol; 2003 Nov; 180(5):362-6. PubMed ID: 14614545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Resistance of E. coli to chloramphenicol and substances of similiar structure].
    SANTARATO R
    Riv Ist Sieroter Ital; 1953; 28(1):48-54. PubMed ID: 13075778
    [No Abstract]   [Full Text] [Related]  

  • 32. A rapid emergence of chloramphenicol resistance by Escherichia coli in the presence of p-aminosalicylate (PAS).
    TSUKAMURA M
    J Antibiot (Tokyo); 1962 Jan; 15():44-5. PubMed ID: 14039841
    [No Abstract]   [Full Text] [Related]  

  • 33. [On electrophoretic behavior of microorganisms in the presence of antibiotics. I. Effect of chloramphenicol on the electrophoresis of E. coli].
    SANTARATO R
    Boll Soc Ital Biol Sper; 1953 Mar; 29(3):386-9. PubMed ID: 13081874
    [No Abstract]   [Full Text] [Related]  

  • 34. [RESEARCH ON THE MECHANISM OF POTASSIUM TRANSPORT IN ESCHERICHIA COLI].
    LUBOCHINSKY B; MEURY J; STOLKOWSKI J
    C R Hebd Seances Acad Sci; 1963 Dec; 257():3686-9. PubMed ID: 14102046
    [No Abstract]   [Full Text] [Related]  

  • 35. Mechanism of chloramphenicol resistance in E. coli. III. The total amino-acid composition of chloramphenicol resistant E. coli and electrophoretical pattern of its beta-galactosidase.
    OKAMOTO S; OHTAKI K; MIZUNO D
    Jpn J Med Sci Biol; 1959 Jun; 12():125-31. PubMed ID: 14428522
    [No Abstract]   [Full Text] [Related]  

  • 36. Chloramphenicol and kanamycin resistance among porcine Escherichia coli in Ontario.
    Travis RM; Gyles CL; Reid-Smith R; Poppe C; McEwen SA; Friendship R; Janecko N; Boerlin P
    J Antimicrob Chemother; 2006 Jul; 58(1):173-7. PubMed ID: 16720568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Resistance of Escherichia coli to chloramphenicol and its simulants].
    SANTARATO R
    Arch Ital Sci Farmacol; 1952 Jul; 2(3):269. PubMed ID: 13008653
    [No Abstract]   [Full Text] [Related]  

  • 38. Chloramphenicol-fastness: development in vivo and experimental production in vitro.
    MEADS M; HARRIS CM; HASLAM NM; CLINE WA
    J Clin Invest; 1950 Nov; 29(11):1474-9. PubMed ID: 14794774
    [No Abstract]   [Full Text] [Related]  

  • 39. Chloramphenicol-fastness: in vivo and in vitro.
    MEADS M
    J Clin Invest; 1950 Jun; 29(6):833. PubMed ID: 15436788
    [No Abstract]   [Full Text] [Related]  

  • 40. Sensitivity of bacteria to chloramphenicol in vitro.
    McLAURIN AW; TUTTLE DM; BEAMER PR
    Am J Clin Pathol; 1951 Feb; 21(2):189-91. PubMed ID: 14810667
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.