These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1479621)

  • 1. Energetic determinants of stunning and cell damage following reoxygenation of rabbit myocardium.
    Dietrich DL; Elzinga G
    J Mol Cell Cardiol; 1992 Nov; 24(11):1277-90. PubMed ID: 1479621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP formation and energy demand in anoxic heart muscle of the rabbit.
    Dietrich DL; Elzinga G
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H526-32. PubMed ID: 1510150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy demand, supply, and utilization in hypoxia, and force recovery after reoxygenation in rabbit heart muscle.
    Dietrich DL; Mast F; Elzinga G
    Circ Res; 1990 Nov; 67(5):1089-96. PubMed ID: 2225349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat produced by rabbit papillary muscle during anoxia and reoxygenation.
    Dietrich DL; Elzinga G
    Circ Res; 1993 Dec; 73(6):1177-87. PubMed ID: 8222088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial force production and energy turnover in anoxia.
    Dietrich DL; Mast F; Elzinga G
    Experientia; 1990 Dec; 46(11-12):1168-72. PubMed ID: 2253716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative and glycolytic ATP formation of rabbit papillary muscle in oxygen and nitrogen.
    Mast F; Elzinga G
    Am J Physiol; 1990 Apr; 258(4 Pt 2):H1144-50. PubMed ID: 2331002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac ATP breakdown and mechanical function during recurrent periods of anoxia.
    De Scheerder IK; Maas AA; Nieukoop AS; van der Meer P; Huizer T; Roelandt JR; de Jong JW
    Cardioscience; 1992 Sep; 3(3):189-95. PubMed ID: 1420955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of the isolated perfused rabbit heart. I. Responses to anoxia and reoxygenation. II. Energy stores.
    Chiong MA; Berezny GM; Winton TL
    Can J Physiol Pharmacol; 1978 Oct; 56(5):844-56. PubMed ID: 709425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preconditioning in isolated superfused rabbit papillary muscles.
    Walker DM; Marber MS; Walker JM; Yellon DM
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1534-40. PubMed ID: 8184931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of hypoxic preconditioning in guinea pig papillary muscles.
    Ravingerova T; Løkebø JE; Munch-Ellingsen J; Sundset R; Tande P; Ytrehus K
    Mol Cell Biochem; 1998 Sep; 186(1-2):53-60. PubMed ID: 9774185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation of energetic state and potassium loss from anoxic myocardium.
    Rau EE; Langer GA
    Am J Physiol; 1978 Nov; 235(5):H537-43. PubMed ID: 727275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and biochemical evidence of protective effect by ONO-3144, a free radical scavenger, on the reoxygenation injury in the anoxic myocardium.
    Ashraf M; Kobayashi H; Rahamathulla PM
    Am J Cardiovasc Pathol; 1989; 2(4):351-64. PubMed ID: 2789807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Bioenergetics During Ischemia and Reperfusion.
    Consolini AE; Ragone MI; Bonazzola P; Colareda GA
    Adv Exp Med Biol; 2017; 982():141-167. PubMed ID: 28551786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of reduction of contractile work on mechanical function in post-hypoxic guinea pig papillary muscles and on myocardial energy metabolism in post-ischemic rat hearts.
    Asayama J; Yamahara Y; Tatsumi T; Matsumoto T; Miyazaki H; Sakai R; Inoue M; Omori I; Inoue D; Nakagawa M
    Jpn Circ J; 1992 Mar; 56(3):292-300. PubMed ID: 1552656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anoxic energy production and contractile activity in mammalian cardiac muscle.
    Siess M; Seifart HI
    Adv Myocardiol; 1980; 2():295-310. PubMed ID: 7423046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preconditioning improves energy metabolism during reperfusion but does not attenuate myocardial stunning in porcine hearts.
    Miyamae M; Fujiwara H; Kida M; Yokota R; Tanaka M; Katsuragawa M; Hasegawa K; Ohura M; Koga K; Yabuuchi Y
    Circulation; 1993 Jul; 88(1):223-34. PubMed ID: 8319337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscarinic receptor stimulation by carbachol improves functional recovery in isolated, blood perfused rabbit heart.
    Hendrikx M; Toshima Y; Mubagwa K; Flameng W
    Cardiovasc Res; 1993 Jun; 27(6):980-9. PubMed ID: 8221789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature threshold and modulation of energy metabolism in the cardioplegic arrested rabbit heart.
    Ning XH; Xu CS; Song YC; Childs KF; Xiao Y; Bolling SF; Lupinetti FM; Portman MA
    Cryobiology; 1998 Feb; 36(1):2-11. PubMed ID: 9500928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent aortic crossclamping prevents cumulative adenosine triphosphate depletion, ventricular fibrillation, and dysfunction (stunning): is it preconditioning?
    Abd-Elfattah AS; Ding M; Wechsler AS
    J Thorac Cardiovasc Surg; 1995 Aug; 110(2):328-39. PubMed ID: 7637350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of the creatine kinase reaction to determine free energy change of ATP hydrolysis in anoxic cardiomyocytes.
    Siegmund B; Koop A; Piper HM
    Pflugers Arch; 1989 Feb; 413(4):435-7. PubMed ID: 2928097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.