These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1479661)

  • 21. Muscarinic receptor subtypes involved in neural bronchoconstriction in the guinea-pig.
    Del Monte M; Subissi A
    Pharmacol Res; 1992; 25 Suppl 1():9-10. PubMed ID: 1324492
    [No Abstract]   [Full Text] [Related]  

  • 22. The effect of Ca2+ channel modulators on vagally induced bronchoconstriction in the guinea-pig.
    Boot JR; Bond A
    Eur J Pharmacol; 1992 Aug; 219(1):123-8. PubMed ID: 1383010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscarinic receptors in vagal routes to the biliary system in dogs.
    Furukawa N; Qu RY; Okada H
    Jpn J Physiol; 1994; 44(5):547-59. PubMed ID: 7891409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional interactions between capsaicin-sensitive and cholinergic nerves in the guinea pig bronchus.
    Myers AC; Undem BJ
    J Pharmacol Exp Ther; 1991 Oct; 259(1):104-9. PubMed ID: 1717677
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacological analysis of the inhibition by pirenzepine and atropine of vagal-stimulated acid secretion in the isolated stomach of the mouse.
    Black JW; Shankley NP
    Br J Pharmacol; 1986 May; 88(1):291-7. PubMed ID: 3754779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of dimethylthiourea, a hydroxyl radical scavenger, on cigarette smoke-induced bronchoconstriction in guinea pigs.
    Matsumoto K; Aizawa H; Inoue H; Koto H; Fukuyama S; Hara N
    Eur J Pharmacol; 2000 Sep; 403(1-2):157-61. PubMed ID: 10969157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of atropine on the responses of rapidly adapting pulmonary stretch receptors and dynamic lung compliance to sodium cyanide-induced hyperpnea.
    Matsumoto S; Yamasaki M; Nagayama T; Kanno T; Shimizu T
    J Auton Nerv Syst; 1993 Jul; 44(1):53-9. PubMed ID: 8409216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eosinophilic leukocyte accumulation during vagally induced bronchoconstriction.
    Saito Y; Okazawa M
    Am J Respir Crit Care Med; 1997 Nov; 156(5):1614-20. PubMed ID: 9372684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Basenji-Greyhound dog model of asthma: influence of atropine on antigen-induced bronchoconstriction.
    Hirshman CA; Downes H
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Apr; 50(4):761-5. PubMed ID: 7263358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new method for determining bronchospasmolytic drug effects in vagotomized guinea pigs.
    Dzimiri N; Odenthal KP
    Methods Find Exp Clin Pharmacol; 1990 Apr; 12(3):185-8. PubMed ID: 2352448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Proceedings: Pharmacological and physiological studies of esophageal electromyography with vagus nerve stimulation].
    Toyama T; Yokoyama I; Nishi K
    Nihon Heikatsukin Gakkai Zasshi; 1973 Dec; 9(4):283-5. PubMed ID: 4807667
    [No Abstract]   [Full Text] [Related]  

  • 32. Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles.
    Yoon MS; Han J; Tse WW; Rogers R
    Am Heart J; 1977 Jan; 93(1):60-5. PubMed ID: 831412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isovolume bronchoconstriction by vagal stimulation in dogs: effects of lung inflation pressure.
    Shinozuka N; Nemoto T; Bates JH
    Respir Physiol; 1998 Jan; 111(1):79-88. PubMed ID: 9496474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attenuation of vagal noradrenergic tachycardia by naloxone.
    Gillespie MN; Evans JM; Rountree RM; Knapp CF
    Eur J Pharmacol; 1984 Jun; 101(3-4):275-9. PubMed ID: 6147257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Intravenous pirenzepine reduces salivary secretion rapidly].
    Taneda M; Satoh H; Nakamura K; Tsutsumi T; Saruki N; Katoh K; Araki Y
    Masui; 1994 May; 43(5):717-21. PubMed ID: 8015160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intravenous versus inhaled atropine for inhibiting bronchoconstrictor responses in dogs.
    Holtzman MJ; McNamara MP; Sheppard D; Fabbri LM; Hahn HL; Graf PD; Nadel JA
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jan; 54(1):134-9. PubMed ID: 6826397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of anticholinergic effects of cibenzoline, disopyramide, and atropine.
    Cazes M; Chassaing C; Martinet M; Cloarec A; Provost D; Boucher M; DuchĂȘne-Marullaz P
    J Cardiovasc Pharmacol; 1990 Feb; 15(2):308-16. PubMed ID: 1689428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphine sulfate inhibits bronchoconstriction in subjects with mild asthma whose responses are inhibited by atropine.
    Eschenbacher WL; Bethel RA; Boushey HA; Sheppard D
    Am Rev Respir Dis; 1984 Sep; 130(3):363-7. PubMed ID: 6476586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of vagal C-fiber afferents in the bronchomotor response to lactic acid in the newborn dog.
    Marantz MJ; Vincent SG; Fisher JT
    J Appl Physiol (1985); 2001 Jun; 90(6):2311-8. PubMed ID: 11356797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of 8-(2-fluoroethyl)-3 alpha-hydroxy-1 alpha H, 5 alpha H-tropaniumbromide benzilate (Ba598Br) on allergy- and drug-induced asthmas.
    Yanaura S; Mizuno H; Goto K; Kamei J; Hosokawa T; Ohtani K; Misawa M
    Jpn J Pharmacol; 1983 Oct; 33(5):971-82. PubMed ID: 6139497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.