These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 1480115)

  • 1. Molecular mechanisms of genetic adaptation to xenobiotic compounds.
    van der Meer JR; de Vos WM; Harayama S; Zehnder AJ
    Microbiol Rev; 1992 Dec; 56(4):677-94. PubMed ID: 1480115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity.
    Nojiri H; Shintani M; Omori T
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):154-74. PubMed ID: 14689248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic biodegradation in microorganisms: a review].
    Khomenkov VG; Shevelev AB; Zhukov VG; Zagustina NA; Bezborodov AM; Popov VO
    Prikl Biokhim Mikrobiol; 2008; 44(2):133-52. PubMed ID: 18669255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies.
    Springael D; Top EM
    Trends Microbiol; 2004 Feb; 12(2):53-8. PubMed ID: 15040322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds.
    Top EM; Springael D
    Curr Opin Biotechnol; 2003 Jun; 14(3):262-9. PubMed ID: 12849778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities.
    Janssen DB; Dinkla IJ; Poelarends GJ; Terpstra P
    Environ Microbiol; 2005 Dec; 7(12):1868-82. PubMed ID: 16309386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation.
    Widada J; Nojiri H; Omori T
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):45-59. PubMed ID: 12382041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microbial degradation of xenobiotics in the environment].
    Rozgaj R
    Arh Hig Rada Toksikol; 1994 Jun; 45(2):189-98. PubMed ID: 7980027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic degradation of aromatic compounds.
    Díaz E; Jiménez JI; Nogales J
    Curr Opin Biotechnol; 2013 Jun; 24(3):431-42. PubMed ID: 23122741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymes and operons mediating xenobiotic degradation in bacteria.
    Mishra V; Lal R; Srinivasan
    Crit Rev Microbiol; 2001; 27(2):133-66. PubMed ID: 11450853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial chemotaxis to xenobiotic chemicals and naturally-occurring analogs.
    Parales RE; Luu RA; Hughes JG; Ditty JL
    Curr Opin Biotechnol; 2015 Jun; 33():318-26. PubMed ID: 25889452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and regulation of catabolic genes.
    Johri AK; Dua M; Singh A; Sethunathan N; Legge RL
    Crit Rev Microbiol; 1999; 25(4):245-73. PubMed ID: 10642887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulations of catabolic genes for the degradation and detoxification of xenobiotics.
    Lal R; Lal S; Dhanaraj PS; Saxena DM
    Adv Appl Microbiol; 1995; 41():55-95. PubMed ID: 7572336
    [No Abstract]   [Full Text] [Related]  

  • 14. Bacterial catabolic transposons.
    Tan HM
    Appl Microbiol Biotechnol; 1999 Jan; 51(1):1-12. PubMed ID: 10077818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature and significance of microbial cometabolism of xenobiotics.
    Janke D; Fritsche W
    J Basic Microbiol; 1985; 25(9):603-19. PubMed ID: 3910802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds.
    van der Meer JR
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):159-78. PubMed ID: 9049028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico identification and construction of microbial gene clusters associated with biodegradation of xenobiotic compounds.
    Awasthi G; Kumari A; Pant AB; Srivastava P
    Microb Pathog; 2018 Jan; 114():340-343. PubMed ID: 29196172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants.
    Nešvera J; Rucká L; Pátek M
    Adv Appl Microbiol; 2015; 93():107-60. PubMed ID: 26505690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial degradation of chlorophenols: pathways, biochemica, and genetic aspects.
    Solyanikova IP; Golovleva LA
    J Environ Sci Health B; 2004 May; 39(3):333-51. PubMed ID: 15186025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial transcriptional regulators for degradation pathways of aromatic compounds.
    Tropel D; van der Meer JR
    Microbiol Mol Biol Rev; 2004 Sep; 68(3):474-500, table of contents. PubMed ID: 15353566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.