These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 1480115)
1. Molecular mechanisms of genetic adaptation to xenobiotic compounds. van der Meer JR; de Vos WM; Harayama S; Zehnder AJ Microbiol Rev; 1992 Dec; 56(4):677-94. PubMed ID: 1480115 [TBL] [Abstract][Full Text] [Related]
2. Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Nojiri H; Shintani M; Omori T Appl Microbiol Biotechnol; 2004 Apr; 64(2):154-74. PubMed ID: 14689248 [TBL] [Abstract][Full Text] [Related]
3. [Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic biodegradation in microorganisms: a review]. Khomenkov VG; Shevelev AB; Zhukov VG; Zagustina NA; Bezborodov AM; Popov VO Prikl Biokhim Mikrobiol; 2008; 44(2):133-52. PubMed ID: 18669255 [TBL] [Abstract][Full Text] [Related]
4. Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Springael D; Top EM Trends Microbiol; 2004 Feb; 12(2):53-8. PubMed ID: 15040322 [TBL] [Abstract][Full Text] [Related]
5. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Top EM; Springael D Curr Opin Biotechnol; 2003 Jun; 14(3):262-9. PubMed ID: 12849778 [TBL] [Abstract][Full Text] [Related]
6. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Janssen DB; Dinkla IJ; Poelarends GJ; Terpstra P Environ Microbiol; 2005 Dec; 7(12):1868-82. PubMed ID: 16309386 [TBL] [Abstract][Full Text] [Related]
7. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Widada J; Nojiri H; Omori T Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):45-59. PubMed ID: 12382041 [TBL] [Abstract][Full Text] [Related]
8. [Microbial degradation of xenobiotics in the environment]. Rozgaj R Arh Hig Rada Toksikol; 1994 Jun; 45(2):189-98. PubMed ID: 7980027 [TBL] [Abstract][Full Text] [Related]
15. Nature and significance of microbial cometabolism of xenobiotics. Janke D; Fritsche W J Basic Microbiol; 1985; 25(9):603-19. PubMed ID: 3910802 [TBL] [Abstract][Full Text] [Related]
16. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. van der Meer JR Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):159-78. PubMed ID: 9049028 [TBL] [Abstract][Full Text] [Related]
17. In silico identification and construction of microbial gene clusters associated with biodegradation of xenobiotic compounds. Awasthi G; Kumari A; Pant AB; Srivastava P Microb Pathog; 2018 Jan; 114():340-343. PubMed ID: 29196172 [TBL] [Abstract][Full Text] [Related]
18. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. Nešvera J; Rucká L; Pátek M Adv Appl Microbiol; 2015; 93():107-60. PubMed ID: 26505690 [TBL] [Abstract][Full Text] [Related]
19. Bacterial degradation of chlorophenols: pathways, biochemica, and genetic aspects. Solyanikova IP; Golovleva LA J Environ Sci Health B; 2004 May; 39(3):333-51. PubMed ID: 15186025 [TBL] [Abstract][Full Text] [Related]
20. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Tropel D; van der Meer JR Microbiol Mol Biol Rev; 2004 Sep; 68(3):474-500, table of contents. PubMed ID: 15353566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]