BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 1480134)

  • 1. Cell-specific metabolism in mouse bone marrow stroma: studies of activation and detoxification of benzene metabolites.
    Ganousis LG; Goon D; Zyglewska T; Wu KK; Ross D
    Mol Pharmacol; 1992 Dec; 42(6):1118-25. PubMed ID: 1480134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone marrow stromal cell bioactivation and detoxification of the benzene metabolite hydroquinone: comparison of macrophages and fibroblastoid cells.
    Thomas DJ; Sadler A; Subrahmanyam VV; Siegel D; Reasor MJ; Wierda D; Ross D
    Mol Pharmacol; 1990 Feb; 37(2):255-62. PubMed ID: 2154673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: identification of target cells and a potential role for modulation of apoptosis in benzene toxicity.
    Ross D; Siegel D; Schattenberg DG; Sun XM; Moran JL
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1177-82. PubMed ID: 9118890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and deactivation of quinones catalyzed by DT-diaphorase. Evidence for bioreductive activation of diaziquone (AZQ) in human tumor cells and detoxification of benzene metabolites in bone marrow stroma.
    Ross D; Siegel D; Gibson NW; Pacheco D; Thomas DJ; Reasor M; Wierda D
    Free Radic Res Commun; 1990; 8(4-6):373-81. PubMed ID: 2113030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase.
    Schlosser MJ; Shurina RD; Kalf GF
    Environ Health Perspect; 1989 Jul; 82():229-37. PubMed ID: 2551664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in xenobiotic detoxifying activities between bone marrow stromal cells from mice and rats: implications for benzene-induced hematotoxicity.
    Zhu H; Li Y; Trush MA
    J Toxicol Environ Health; 1995 Oct; 46(2):183-201. PubMed ID: 7563217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of quinone reductase and glutathione in bone marrow cells by 1,2-dithiole-3-thione: effect on hydroquinone-induced cytotoxicity.
    Twerdok LE; Rembish SJ; Trush MA
    Toxicol Appl Pharmacol; 1992 Feb; 112(2):273-81. PubMed ID: 1371615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity.
    Subrahmanyam VV; Doane-Setzer P; Steinmetz KL; Ross D; Smith MT
    Toxicology; 1990 May; 62(1):107-16. PubMed ID: 2343455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzene's toxicity: a consolidated short review of human and animal studies by HA Khan.
    Snyder R
    Hum Exp Toxicol; 2007 Sep; 26(9):687-96. PubMed ID: 17984139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic activation of hydroquinone by macrophage peroxidase.
    Schlosser MJ; Kalf GF
    Chem Biol Interact; 1989; 72(1-2):191-207. PubMed ID: 2555072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of target cell susceptibility as a basis for the development of a chemoprotective strategy against benzene-induced hematotoxicities.
    Trush MA; Twerdok LE; Rembish SJ; Zhu H; Li Y
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1227-34. PubMed ID: 9118897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies with 1,2-dithiole-3-thione as a chemoprotector of hydroquinone-induced toxicity to DBA/2-derived bone marrow stromal cells.
    Twerdok LE; Rembish SJ; Trush MA
    Environ Health Perspect; 1993 Jun; 101(2):172-7. PubMed ID: 8354204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of quinol thioethers in bone marrow of hydroquinone/phenol-treated rats and mice and their potential role in benzene-mediated hematotoxicity.
    Bratton SB; Lau SS; Monks TJ
    Chem Res Toxicol; 1997 Aug; 10(8):859-65. PubMed ID: 9282834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo.
    Kolachana P; Subrahmanyam VV; Meyer KB; Zhang L; Smith MT
    Cancer Res; 1993 Mar; 53(5):1023-6. PubMed ID: 8439949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of hepatic metabolites of benzene in bone marrow peroxidase-mediated myelo- and genotoxicity.
    Kalf G; Shurina R; Renz J; Schlosser M
    Adv Exp Med Biol; 1991; 283():443-55. PubMed ID: 1906224
    [No Abstract]   [Full Text] [Related]  

  • 16. Macrophage regulation of myelopoiesis is altered by exposure to the benzene metabolite hydroquinone.
    Thomas DJ; Reasor MJ; Wierda D
    Toxicol Appl Pharmacol; 1989 Mar; 97(3):440-53. PubMed ID: 2609342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactivation of catechol in rat and human bone marrow cells.
    Bhat RV; Subrahmanyam VV; Sadler A; Ross D
    Toxicol Appl Pharmacol; 1988 Jun; 94(2):297-304. PubMed ID: 3388426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in quinone reductase activity in primary bone marrow stromal cells derived from C57BL/6 and DBA/2 mice.
    Twerdok LE; Trush MA
    Res Commun Chem Pathol Pharmacol; 1990 Mar; 67(3):375-86. PubMed ID: 2343185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of bone marrow stromal cell function by benzene and hydroquinone is ameliorated by indomethacin.
    Gaido KW; Wierda D
    Toxicol Appl Pharmacol; 1987 Jul; 89(3):378-90. PubMed ID: 3111015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure.
    Eastmond DA; Smith MT; Irons RD
    Toxicol Appl Pharmacol; 1987 Oct; 91(1):85-95. PubMed ID: 2823417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.