These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 1480134)
1. Cell-specific metabolism in mouse bone marrow stroma: studies of activation and detoxification of benzene metabolites. Ganousis LG; Goon D; Zyglewska T; Wu KK; Ross D Mol Pharmacol; 1992 Dec; 42(6):1118-25. PubMed ID: 1480134 [TBL] [Abstract][Full Text] [Related]
2. Bone marrow stromal cell bioactivation and detoxification of the benzene metabolite hydroquinone: comparison of macrophages and fibroblastoid cells. Thomas DJ; Sadler A; Subrahmanyam VV; Siegel D; Reasor MJ; Wierda D; Ross D Mol Pharmacol; 1990 Feb; 37(2):255-62. PubMed ID: 2154673 [TBL] [Abstract][Full Text] [Related]
3. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: identification of target cells and a potential role for modulation of apoptosis in benzene toxicity. Ross D; Siegel D; Schattenberg DG; Sun XM; Moran JL Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1177-82. PubMed ID: 9118890 [TBL] [Abstract][Full Text] [Related]
4. Activation and deactivation of quinones catalyzed by DT-diaphorase. Evidence for bioreductive activation of diaziquone (AZQ) in human tumor cells and detoxification of benzene metabolites in bone marrow stroma. Ross D; Siegel D; Gibson NW; Pacheco D; Thomas DJ; Reasor M; Wierda D Free Radic Res Commun; 1990; 8(4-6):373-81. PubMed ID: 2113030 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase. Schlosser MJ; Shurina RD; Kalf GF Environ Health Perspect; 1989 Jul; 82():229-37. PubMed ID: 2551664 [TBL] [Abstract][Full Text] [Related]
6. Differences in xenobiotic detoxifying activities between bone marrow stromal cells from mice and rats: implications for benzene-induced hematotoxicity. Zhu H; Li Y; Trush MA J Toxicol Environ Health; 1995 Oct; 46(2):183-201. PubMed ID: 7563217 [TBL] [Abstract][Full Text] [Related]
7. Induction of quinone reductase and glutathione in bone marrow cells by 1,2-dithiole-3-thione: effect on hydroquinone-induced cytotoxicity. Twerdok LE; Rembish SJ; Trush MA Toxicol Appl Pharmacol; 1992 Feb; 112(2):273-81. PubMed ID: 1371615 [TBL] [Abstract][Full Text] [Related]
8. Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity. Subrahmanyam VV; Doane-Setzer P; Steinmetz KL; Ross D; Smith MT Toxicology; 1990 May; 62(1):107-16. PubMed ID: 2343455 [TBL] [Abstract][Full Text] [Related]
9. Benzene's toxicity: a consolidated short review of human and animal studies by HA Khan. Snyder R Hum Exp Toxicol; 2007 Sep; 26(9):687-96. PubMed ID: 17984139 [TBL] [Abstract][Full Text] [Related]
11. Analysis of target cell susceptibility as a basis for the development of a chemoprotective strategy against benzene-induced hematotoxicities. Trush MA; Twerdok LE; Rembish SJ; Zhu H; Li Y Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1227-34. PubMed ID: 9118897 [TBL] [Abstract][Full Text] [Related]
12. Studies with 1,2-dithiole-3-thione as a chemoprotector of hydroquinone-induced toxicity to DBA/2-derived bone marrow stromal cells. Twerdok LE; Rembish SJ; Trush MA Environ Health Perspect; 1993 Jun; 101(2):172-7. PubMed ID: 8354204 [TBL] [Abstract][Full Text] [Related]
13. Identification of quinol thioethers in bone marrow of hydroquinone/phenol-treated rats and mice and their potential role in benzene-mediated hematotoxicity. Bratton SB; Lau SS; Monks TJ Chem Res Toxicol; 1997 Aug; 10(8):859-65. PubMed ID: 9282834 [TBL] [Abstract][Full Text] [Related]
14. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Kolachana P; Subrahmanyam VV; Meyer KB; Zhang L; Smith MT Cancer Res; 1993 Mar; 53(5):1023-6. PubMed ID: 8439949 [TBL] [Abstract][Full Text] [Related]
15. The role of hepatic metabolites of benzene in bone marrow peroxidase-mediated myelo- and genotoxicity. Kalf G; Shurina R; Renz J; Schlosser M Adv Exp Med Biol; 1991; 283():443-55. PubMed ID: 1906224 [No Abstract] [Full Text] [Related]
16. Macrophage regulation of myelopoiesis is altered by exposure to the benzene metabolite hydroquinone. Thomas DJ; Reasor MJ; Wierda D Toxicol Appl Pharmacol; 1989 Mar; 97(3):440-53. PubMed ID: 2609342 [TBL] [Abstract][Full Text] [Related]
17. Bioactivation of catechol in rat and human bone marrow cells. Bhat RV; Subrahmanyam VV; Sadler A; Ross D Toxicol Appl Pharmacol; 1988 Jun; 94(2):297-304. PubMed ID: 3388426 [TBL] [Abstract][Full Text] [Related]
18. Differences in quinone reductase activity in primary bone marrow stromal cells derived from C57BL/6 and DBA/2 mice. Twerdok LE; Trush MA Res Commun Chem Pathol Pharmacol; 1990 Mar; 67(3):375-86. PubMed ID: 2343185 [TBL] [Abstract][Full Text] [Related]
19. Suppression of bone marrow stromal cell function by benzene and hydroquinone is ameliorated by indomethacin. Gaido KW; Wierda D Toxicol Appl Pharmacol; 1987 Jul; 89(3):378-90. PubMed ID: 3111015 [TBL] [Abstract][Full Text] [Related]
20. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Eastmond DA; Smith MT; Irons RD Toxicol Appl Pharmacol; 1987 Oct; 91(1):85-95. PubMed ID: 2823417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]