BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 1480462)

  • 1. Effects of inspiratory resistive loading on chest wall motion and ventilation: differences between preterm and full-term infants.
    Deoras KS; Greenspan JS; Wolfson MR; Keklikian EN; Shaffer TH; Allen JL
    Pediatr Res; 1992 Nov; 32(5):589-94. PubMed ID: 1480462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between chest wall motion and lung mechanics in normal infants and infants with bronchopulmonary dysplasia.
    Allen JL; Greenspan JS; Deoras KS; Keklikian E; Wolfson MR; Shaffer TH
    Pediatr Pulmonol; 1991; 11(1):37-43. PubMed ID: 1833720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased respiratory drive and limited adaptation to loaded breathing in bronchopulmonary dysplasia.
    Greenspan JS; Wolfson MR; Locke RG; Allen JL; Shaffer TH
    Pediatr Res; 1992 Sep; 32(3):356-9. PubMed ID: 1408475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proportional assist ventilation decreases thoracoabdominal asynchrony and chest wall distortion in preterm infants.
    Musante G; Schulze A; Gerhardt T; Everett R; Claure N; Schaller P; Bancalari E
    Pediatr Res; 2001 Feb; 49(2):175-80. PubMed ID: 11158510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chest wall motion in neonates utilizing respiratory inductive plethysmography.
    Warren RH; Alderson SH
    J Perinatol; 1994; 14(2):101-5. PubMed ID: 8014690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of tidal ventilation in preterm and term newborn infants using electromagnetic inductance plethysmography.
    Williams EM; Pickerd N; Eriksen M; Øygarden K; Kotecha S
    Physiol Meas; 2011 Nov; 32(11):1833-45. PubMed ID: 22027661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chest wall motion in preterm infants using respiratory inductive plethysmography.
    Warren RH; Horan SM; Robertson PK
    Eur Respir J; 1997 Oct; 10(10):2295-300. PubMed ID: 9387956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral characteristics of airway opening and chest wall tidal flows in spontaneously breathing preterm infants.
    Habib RH; Pyon KH; Courtney SE; Aghai ZH
    J Appl Physiol (1985); 2003 May; 94(5):1933-40. PubMed ID: 12524380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of position on the mechanical interaction between the rib cage and abdomen in preterm infants.
    Wolfson MR; Greenspan JS; Deoras KS; Allen JL; Shaffer TH
    J Appl Physiol (1985); 1992 Mar; 72(3):1032-8. PubMed ID: 1533209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Work of breathing during nasal continuous positive airway pressure in preterm infants: a comparison of bubble vs variable-flow devices.
    Liptsen E; Aghai ZH; Pyon KH; Saslow JG; Nakhla T; Long J; Steele AM; Habib RH; Courtney SE
    J Perinatol; 2005 Jul; 25(7):453-8. PubMed ID: 15858606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chest wall motion before and during mechanical ventilation in children with neuromuscular disease.
    Diaz CE; Deoras KS; Allen JL
    Pediatr Pulmonol; 1993 Aug; 16(2):89-95. PubMed ID: 8367222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of respiratory muscles in upper airway narrowing induced by inspiratory loading in preterm infants.
    Duara S; Silva Neto G; Claure N
    J Appl Physiol (1985); 1994 Jul; 77(1):30-6. PubMed ID: 7961250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thoracoabdominal asynchrony in infants with airflow obstruction.
    Allen JL; Wolfson MR; McDowell K; Shaffer TH
    Am Rev Respir Dis; 1990 Feb; 141(2):337-42. PubMed ID: 2137313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The immediate ventilatory response to added inspiratory elastic and resistive loads in preterm infants.
    Boychuk RB; Seshia MM; Rigatto H
    Pediatr Res; 1977 Apr; 11(4):276-9. PubMed ID: 846780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of gavage feeding on the mechanics of the lung, chest wall, and diaphragm of preterm infants.
    Heldt GP
    Pediatr Res; 1988 Jul; 24(1):55-8. PubMed ID: 3137518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thoracoabdominal asynchrony in a virtual preterm infant: computational modeling and analysis.
    Foster RR; Smith B; Ellwein Fix L
    Am J Physiol Lung Cell Mol Physiol; 2023 Aug; 325(2):L190-L205. PubMed ID: 37338113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prone versus supine positioning in the well preterm infant: effects on work of breathing and breathing patterns.
    Levy J; Habib RH; Liptsen E; Singh R; Kahn D; Steele AM; Courtney SE
    Pediatr Pulmonol; 2006 Aug; 41(8):754-8. PubMed ID: 16779849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute effects of PEEP on tidal volume and respiratory center output during synchronized ventilation in preterm infants.
    Alegría X; Claure N; Wada Y; Esquer C; D'Ugard C; Bancalari E
    Pediatr Pulmonol; 2006 Aug; 41(8):759-64. PubMed ID: 16779842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of carbon dioxide inhalation on phase characteristics of breathing movements in healthy newborn infants.
    Andersson D; Gennser G; Johnson P
    J Dev Physiol; 1986 Jun; 8(3):147-57. PubMed ID: 3091674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of propofol anaesthesia on thoraco-abdominal volume variations during spontaneous breathing and mechanical ventilation.
    Aliverti A; Kostic P; Lo Mauro A; Andersson-Olerud M; Quaranta M; Pedotti A; Hedenstierna G; Frykholm P
    Acta Anaesthesiol Scand; 2011 May; 55(5):588-96. PubMed ID: 21385159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.