These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1480618)

  • 1. Potential of genetic algorithms in protein folding and protein engineering simulations.
    Dandekar T; Argos P
    Protein Eng; 1992 Oct; 5(7):637-45. PubMed ID: 1480618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal sequence selection in proteins of known structure by simulated evolution.
    Hellinga HW; Richards FM
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5803-7. PubMed ID: 8016069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking an easily detectable phenotype to the folding of a common structural motif. Selection of rare turn mutations that prevent the folding of Rop.
    Castagnoli L; Vetriani C; Cesareni G
    J Mol Biol; 1994 Apr; 237(4):378-87. PubMed ID: 8151699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between sequence determinants of stability for two natural homologous proteins with different folds.
    Van Dorn LO; Newlove T; Chang S; Ingram WM; Cordes MH
    Biochemistry; 2006 Sep; 45(35):10542-53. PubMed ID: 16939206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in the fast folding rates of the lambda-repressor: a hybrid molecular dynamics study.
    Pogorelov TV; Luthey-Schulten Z
    Biophys J; 2004 Jul; 87(1):207-14. PubMed ID: 15240458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding the main chain of small proteins with the genetic algorithm.
    Dandekar T; Argos P
    J Mol Biol; 1994 Feb; 236(3):844-61. PubMed ID: 8114098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo protein design: fully automated sequence selection.
    Dahiyat BI; Mayo SL
    Science; 1997 Oct; 278(5335):82-7. PubMed ID: 9311930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of a protein fold in vitro.
    Cordes MH; Walsh NP; McKnight CJ; Sauer RT
    Science; 1999 Apr; 284(5412):325-8. PubMed ID: 10195898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteins from scratch.
    DeGrado WF
    Science; 1997 Oct; 278(5335):80-1. PubMed ID: 9340760
    [No Abstract]   [Full Text] [Related]  

  • 10. Design of lambda Cro fold: solution structure of a monomeric variant of the de novo protein.
    Isogai Y; Ito Y; Ikeya T; Shiro Y; Ota M
    J Mol Biol; 2005 Dec; 354(4):801-14. PubMed ID: 16289118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and ab initio simulations of early folding units in proteins.
    Gilis D; Rooman M
    Proteins; 2001 Feb; 42(2):164-76. PubMed ID: 11119640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the folding and stability of a zinc finger-based full sequence design protein with replica exchange molecular dynamics simulations.
    Li W; Zhang J; Wang W
    Proteins; 2007 May; 67(2):338-49. PubMed ID: 17285627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio protein folding simulations with genetic algorithms: simulations on the complete sequence of small proteins.
    Pedersen JT; Moult J
    Proteins; 1997; Suppl 1():179-84. PubMed ID: 9518346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrete molecular dynamics: an efficient and versatile simulation method for fine protein characterization.
    Shirvanyants D; Ding F; Tsao D; Ramachandran S; Dokholyan NV
    J Phys Chem B; 2012 Jul; 116(29):8375-82. PubMed ID: 22280505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing foldable proteins from nonfolders: when and how do they differ?
    Sosnick TR; Berry RS; Colubri A; Fernández A
    Proteins; 2002 Oct; 49(1):15-23. PubMed ID: 12211012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo folding of the DNA-binding ATF-2 zinc finger motif in an all-atom free-energy forcefield.
    Gopal SM; Wenzel W
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7726-8. PubMed ID: 17061298
    [No Abstract]   [Full Text] [Related]  

  • 18. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions.
    Dandekar T; Argos P
    J Mol Biol; 1996 Mar; 256(3):645-60. PubMed ID: 8604145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling zinc-binding proteins with GADGET: genetic algorithm and distance geometry for exploring topology.
    Petersen K; Taylor WR
    J Mol Biol; 2003 Jan; 325(5):1039-59. PubMed ID: 12527307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and stability of monomeric lambda repressor: NMR evidence for two-state folding.
    Huang GS; Oas TG
    Biochemistry; 1995 Mar; 34(12):3884-92. PubMed ID: 7696251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.