BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 1481902)

  • 1. Blood viscosity in tube flow: dependence on diameter and hematocrit.
    Pries AR; Neuhaus D; Gaehtgens P
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1770-8. PubMed ID: 1481902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W; Johnson PC; Gaehtgens P
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB; Meiselman HJ
    Am J Physiol; 1988 Feb; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscosity reduction of red blood cells from preterm and full-term neonates and adults in narrow tubes (Fahraeus-Lindqvist effect).
    Zilow EP; Linderkamp O
    Pediatr Res; 1989 Jun; 25(6):595-9. PubMed ID: 2740150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semi-empirical model of apparent blood viscosity as a function of vessel diameter and discharge hematocrit.
    Kiani MF; Hudetz AG
    Biorheology; 1991; 28(1-2):65-73. PubMed ID: 2049533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood viscosity and optimal hematocrit in narrow tubes.
    Stadler AA; Zilow EP; Linderkamp O
    Biorheology; 1990; 27(5):779-88. PubMed ID: 2271768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fåhraeus and Fåhreaus-Lindqvist effects for neonatal and adult red blood cell suspensions.
    McKay CB; Linderkamp O; Meiselman HJ
    Pediatr Res; 1993 Oct; 34(4):538-43. PubMed ID: 8255690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood viscosity and optimal hematocrit in preterm and full-term neonates in 50- to 500-micrometer tubes.
    Linderkamp O; Stadler AA; Zilow EP
    Pediatr Res; 1992 Jul; 32(1):97-102. PubMed ID: 1635852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube.
    Moyers-Gonzalez MA; Owens RG
    Biorheology; 2010; 47(1):39-71. PubMed ID: 20448297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood flow in microvascular networks. Experiments and simulation.
    Pries AR; Secomb TW; Gaehtgens P; Gross JF
    Circ Res; 1990 Oct; 67(4):826-34. PubMed ID: 2208609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a classic paper by Robin Fahraeus and Torsten Lindqvist to teach basic hemorheology.
    Toksvang LN; Berg RM
    Adv Physiol Educ; 2013 Jun; 37(2):129-33. PubMed ID: 23728130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W; Gaehtgens P; Johnson PC
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microvascular blood viscosity in vivo and the endothelial surface layer.
    Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2657-64. PubMed ID: 16040719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance to blood flow in microvessels in vivo.
    Pries AR; Secomb TW; Gessner T; Sperandio MB; Gross JF; Gaehtgens P
    Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic theory based model for blood flow and its viscosity.
    Gidaspow D; Huang J
    Ann Biomed Eng; 2009 Aug; 37(8):1534-45. PubMed ID: 19479375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity.
    Sevick EM; Jain RK
    Cancer Res; 1989 Jul; 49(13):3513-9. PubMed ID: 2731173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical model for the Fåhræus effect in medium-large microvessels.
    Farina A; Fasano A; Rosso F
    J Theor Biol; 2023 Feb; 558():111355. PubMed ID: 36402201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmolality- and hematocrit-mediated flow behavior of RBC suspensions in 33 micrometer ID tubes.
    McKay CB; Meiselman HJ
    Biorheology; 1989; 26(4):863-74. PubMed ID: 2611376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hematocrit fluctuations within capillary tubes and estimation of Fåhraeus effect.
    Secomb TW; Pries AR; Gaehtgens P
    Int J Microcirc Clin Exp; 1987; 5(4):335-45. PubMed ID: 3557819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.