These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1481983)

  • 1. Alkylation of cysteine with acrylamide for protein sequence analysis.
    Brune DC
    Anal Biochem; 1992 Dec; 207(2):285-90. PubMed ID: 1481983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ alkylation with acrylamide for identification of cysteinyl residues in proteins during one- and two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis.
    Mineki R; Taka H; Fujimura T; Kikkawa M; Shindo N; Murayama K
    Proteomics; 2002 Dec; 2(12):1672-81. PubMed ID: 12469337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and quantitation of cysteine in proteins separated by gel electrophoresis.
    Yan JX; Kett WC; Herbert BR; Gooley AA; Packer NH; Williams KL
    J Chromatogr A; 1998 Jul; 813(1):187-200. PubMed ID: 9697320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-pyridylethylation of intact polyacrylamide gels and in situ digestion of electrophoretically separated proteins: a rapid mass spectrometric method for identifying cysteine-containing peptides.
    Moritz RL; Eddes JS; Reid GE; Simpson RJ
    Electrophoresis; 1996 May; 17(5):907-17. PubMed ID: 8783016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preincubation with cysteine prevents modification of sulfhydryl groups in proteins by unreacted acrylamide in a gel.
    Chiari M; Righetti PG; Negri A; Ceciliani F; Ronchi S
    Electrophoresis; 1992 Nov; 13(11):882-4. PubMed ID: 1483433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-isopropyliodoacetamide in the reduction and alkylation of proteins: use in microsequence analysis.
    Krutzsch HC; Inman JK
    Anal Biochem; 1993 Feb; 209(1):109-16. PubMed ID: 8465942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line procedures for alkylation of cysteine residues with 3-bromopropylamine prior to protein sequence analysis.
    Jue RA; Hale JE
    Anal Biochem; 1994 Sep; 221(2):374-8. PubMed ID: 7810880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of cysteine residues alkylated with 3-bromopropylamine by protein sequence analysis.
    Jue RA; Hale JE
    Anal Biochem; 1993 Apr; 210(1):39-44. PubMed ID: 8489023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing acrylamide alkylation sites in cysteine-free proteins by matrix-assisted laser desorption/ionisation time-of-flight.
    Bordini E; Hamdan M; Righetti PG
    Rapid Commun Mass Spectrom; 2000; 14(10):840-8. PubMed ID: 10825247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of cysteine residues with N-methyl iodoacetamide.
    Ramseier U; Chang JY
    Anal Biochem; 1994 Sep; 221(2):231-3. PubMed ID: 7810861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the reactivity of S-S bridges to acrylamide in some proteins under high pH conditions by matrix-assisted laser desorption/ ionisation.
    Bordini E; Hamdan M; Righetti PG
    Rapid Commun Mass Spectrom; 1999; 13(18):1818-27. PubMed ID: 10482895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for internal amino acid sequence analysis of proteins separated by polyacrylamide gel electrophoresis.
    Ward LD; Reid GE; Moritz RL; Simpson RJ
    J Chromatogr; 1990 Oct; 519(1):199-216. PubMed ID: 2077045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line liquid chromatography/electrospray tandem mass spectrometry to investigate acrylamide adducts with cysteine residues: implications for polyacrylamide gel electrophoresis separations of proteins.
    Garzotti M; Rovatti L; Hamdan M
    Rapid Commun Mass Spectrom; 1998; 12(8):484-8. PubMed ID: 9586236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-carboxymethylation of proteins transferred onto polyvinylidene difluoride membranes followed by in situ protease digestion and amino acid microsequencing.
    Iwamatsu A
    Electrophoresis; 1992 Mar; 13(3):142-7. PubMed ID: 1592044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of disulfide linkages in platelet-derived growth factor AA.
    Haniu M; Hsieh P; Rohde MF; Kenney WC
    Arch Biochem Biophys; 1994 May; 310(2):433-7. PubMed ID: 8179329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification.
    Sechi S; Chait BT
    Anal Chem; 1998 Dec; 70(24):5150-8. PubMed ID: 9868912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of automatic in-gel digestion by in situ alkylation of proteins.
    Yokono T; Mineki R; Taka H; Kotaniguchi H; Murayama K
    J Biomol Tech; 2003 Sep; 14(3):191-6. PubMed ID: 13678149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of micropreparative electrophoresis of protein/peptide isolations for primary structure determinations.
    Sheer DG; Yamane DK; Hawke DH; Yuan PM
    Biotechniques; 1990 Oct; 9(4):486-95. PubMed ID: 2257147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyridylethylation of cysteine residues in proteins.
    Kao MC; Chung MC
    Anal Biochem; 1993 Nov; 215(1):82-5. PubMed ID: 8297018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal amino acid sequencing of proteins by in situ cyanogen bromide cleavage in polyacrylamide gels.
    Jahnen W; Ward LD; Reid GE; Moritz RL; Simpson RJ
    Biochem Biophys Res Commun; 1990 Jan; 166(1):139-45. PubMed ID: 2302197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.