BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1482323)

  • 1. Adsorption of nafamostat mesilate by hemodialysis membranes.
    Inagaki O; Nishian Y; Iwaki R; Nakagawa K; Takamitsu Y; Fujita Y
    Artif Organs; 1992 Dec; 16(6):553-8. PubMed ID: 1482323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of Nafamostat Mesilate on AN69ST Membranes: A Single-Center Retrospective and In Vitro Study.
    Nakamura Y; Hara S; Hatomoto H; Yamasaki S; Nakano T; Miyazaki M; Matsumoto N; Irie Y; Ishikura H
    Ther Apher Dial; 2017 Dec; 21(6):620-627. PubMed ID: 28960755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of a polyacrylonitrile membrane and a membrane made of regenerated cellulose on the plasma concentrations of erythropoietin during hemodialysis.
    Opatrný K; Krouzecký A; Wirth J; Vít L; Eiselt J
    Artif Organs; 1998 Oct; 22(10):816-20. PubMed ID: 9790077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nafamostat mesilate: a regional anticoagulant for hemodialysis in patients at high risk for bleeding.
    Akizawa T; Koshikawa S; Ota K; Kazama M; Mimura N; Hirasawa Y
    Nephron; 1993; 64(3):376-81. PubMed ID: 8341382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Beneficial characteristics of protease inhibitor as an anticoagulant for extracorporeal circulation].
    Akizawa T
    Rinsho Ketsueki; 1990 Jun; 31(6):782-6. PubMed ID: 2214168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effectiveness of FUT-175, protease inhibitor, as an anticoagulant to hemodialysis].
    Pak K; Shirasu A; Okino K; Sako H; Nakane Y; Umemura K; Maeda S; Tomoyoshi T
    Hinyokika Kiyo; 1988 Jun; 34(6):1077-81. PubMed ID: 3223453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of 131I-beta2 microglobulin in hemodialysis patients: assessment using total body counting.
    Chanard J; Caudwell V; Valeire J; Vincent C; Randoux C; Wuillai A; Wynckel A
    Artif Organs; 1998 Jul; 22(7):574-80. PubMed ID: 9684694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo assessment of intact parathyroid hormone adsorption by different dialysis membranes during hemodialysis.
    Balducci A; Coen G; Manni M; Perruzza I; Fassino V; Sardella D; Grandi F
    Artif Organs; 2004 Dec; 28(12):1067-75. PubMed ID: 15554934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the adsorption of nafamostat mesilate between polyester-polymer alloy and polysulfone membranes.
    Goto S; Ookawara S; Saito A
    J Artif Organs; 2017 Jun; 20(2):138-144. PubMed ID: 27896500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaphylactoid reactions during hemodialysis in sheep are ACE inhibitor dose-dependent and mediated by bradykinin.
    Krieter DH; Grude M; Lemke HD; Fink E; Bönner G; Schölkens BA; Schulz E; Müller GA
    Kidney Int; 1998 Apr; 53(4):1026-35. PubMed ID: 9551414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of blood contact on the transport properties of hemodialysis membranes: a two-layer membrane model.
    Langsdorf LJ; Zydney AL
    Blood Purif; 1994; 12(6):292-307. PubMed ID: 7532418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Molecular specificity of nafamostat mesilate (FUT), a drug used for the treatments of DIC and acute pancreatitis and as an anticoagulant--the pharmacodynamics and pharmacological action].
    Tsukagoshi S
    Gan To Kagaku Ryoho; 2001 Sep; 28(9):1237-43. PubMed ID: 11579633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AN69: Evolution of the world's first high permeability membrane.
    Thomas M; Moriyama K; Ledebo I
    Contrib Nephrol; 2011; 173():119-129. PubMed ID: 21865784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticoagulation with nafamostat mesilate, a synthetic protease inhibitor, in hemodialysis patients with a bleeding risk.
    Matsuo T; Kario K; Nakao K; Yamada T; Matsuo M
    Haemostasis; 1993; 23(3):135-41. PubMed ID: 8276316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodialysis membrane biocompatibility: the case of erythropoietin.
    Cheung AK; Hohnholt M; Leypoldt JK; DeSpain M
    Blood Purif; 1991; 9(3):153-63. PubMed ID: 1666293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leukocytes, eosinophils and complement function during hemodialysis with polysulphone and polymethylmethacrylate membranes: comparison with cuprophan and polyacrylonitrile.
    Bergesio F; Monzani G; Manescalchi F; Boccabianca I; Passaleva A; Frizzi V
    Blood Purif; 1988; 6(1):16-26. PubMed ID: 3345242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Filtration of native and glycated beta2-microglobulin by charged and neutral dialysis membranes.
    Randoux C; Gillery P; Georges N; Lavaud S; Chanard J
    Kidney Int; 2001 Oct; 60(4):1571-7. PubMed ID: 11576375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of human recombinant erythropoietin on dialysis membranes in vitro.
    Mori H; Hiraoka K; Yorifuji R; Iwasaki T; Gomikawa S; Inagaki O; Inoue S; Takamitsu Y; Fujita Y
    Artif Organs; 1994 Oct; 18(10):725-8. PubMed ID: 7832652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the surface potential of the hemodialysis membrane and the electrical charge of the gadolinium contrast medium on dialyzability.
    Okada S; Inoue K; Kijima T; Katagiri K; Kumazaki T
    J Nippon Med Sch; 2003 Feb; 70(1):12-5. PubMed ID: 12646970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes.
    Désormeaux A; Moreau ME; Lepage Y; Chanard J; Adam A
    Biomaterials; 2008 Mar; 29(9):1139-46. PubMed ID: 18078988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.