These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1482365)

  • 1. Physico-chemical modeling of the role of free radicals in photo-dynamic therapy. I. Utilization of quantum yield data of singlet oxygen formation for the study of the interaction between excited photosensitizer and stable free radicals.
    Vidóczy T; Elzemzam S; Gál D
    Biochem Biophys Res Commun; 1992 Dec; 189(3):1548-52. PubMed ID: 1482365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic detection of triplet state and singlet oxygen in highly absorbing samples.
    Ouzafe M; Poulet P; Chambron J
    Photochem Photobiol; 1992 Apr; 55(4):491-503. PubMed ID: 1620726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physico-chemical modeling of the role of free radicals in photodynamic therapy. II. Interactions of ground state sensitizers with free radicals studied by chemiluminescence spectrometry.
    Vasvári G; Elzemzam S; Gál D
    Biochem Biophys Res Commun; 1993 Dec; 197(3):1536-42. PubMed ID: 8280173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies of cutaneous photosensitizing agents--XV. Anthralin and its oxidation product 1,8-dihydroxyanthraquinone.
    Dabestani R; Hall RD; Sik RH; Chignell CF
    Photochem Photobiol; 1990 Nov; 52(5):961-71. PubMed ID: 2287637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative.
    Tanielian C; Schweitzer C; Mechin R; Wolff C
    Free Radic Biol Med; 2001 Jan; 30(2):208-12. PubMed ID: 11163538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of singlet oxygen and its role in dye-sensitized photooxidation in aqueous and micellar solutions.
    Kraljić I
    Biochimie; 1986 Jun; 68(6):807-11. PubMed ID: 3092877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum yields and kinetics of the photobleaching of hematoporphyrin, Photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin.
    Spikes JD
    Photochem Photobiol; 1992 Jun; 55(6):797-808. PubMed ID: 1409888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inquiry of photosensitization mechanism of yangzhou hematoporphyrin derivative (YHPD).
    Zhang ZY; Tao NB; He RG
    Sci China B; 1992 Jan; 35(1):39-49. PubMed ID: 1316125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of oxygen in the phototoxicity of phthalocyanines.
    Rosenthal I; Ben-Hur E
    Int J Radiat Biol; 1995 Jan; 67(1):85-91. PubMed ID: 7852821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merbromin (mercurochrome)--a photosensitizer for singlet oxygen reactions.
    Gollnick K; Held S
    J Photochem Photobiol B; 1990 Apr; 5(1):85-93. PubMed ID: 1692875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physico-chemical modeling of the role of free radicals in photodynamic therapy. III. Interactions of stable free radicals with excited photosensitizers studied by kinetic ESR spectroscopy.
    Kriska T; Korecz L; Nemes I; Gál D
    Biochem Biophys Res Commun; 1995 Oct; 215(1):192-8. PubMed ID: 7575590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitized production of singlet oxygen by merocyanine 540 bound to liposomes.
    Hoebeke M; Piette J; van de Vorst A
    J Photochem Photobiol B; 1991 Jun; 9(3-4):281-94. PubMed ID: 1919873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of photosensitizers in chemical and biological processes: the MTO mechanism in photodynamic therapy.
    Gál D
    Biochem Biophys Res Commun; 1992 Jul; 186(2):1032-6. PubMed ID: 1497636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green.
    Lin H; Shen Y; Chen D; Lin L; Wilson BC; Li B; Xie S
    J Fluoresc; 2013 Jan; 23(1):41-7. PubMed ID: 22914972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singlet oxygen quantum yield determination for a fluorene-based two-photon photosensitizer.
    Belfield KD; Bondar MV; Przhonska OV
    J Fluoresc; 2006 Jan; 16(1):111-7. PubMed ID: 16604431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pulsed laser and pulse radiolysis study of amphiphilic chlorophyll derivatives with PDT activity toward malignant melanoma.
    Fiedor L; Gorman AA; Hamblett I; Rosenbach-Belkin V; Salomon Y; Scherz A; Tregub I
    Photochem Photobiol; 1993 Oct; 58(4):506-11. PubMed ID: 8248323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embelin's Versatile Photochemistry Makes It a Potent Photosensitizer for Photodynamic Therapy.
    Opata MR; Dreuw A
    J Phys Chem B; 2021 Apr; 125(14):3527-3537. PubMed ID: 33821648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of hematoporphyrin IX potential for photodynamic therapy by entrapment in silica nanospheres.
    Silva PR; Vono LL; Espósito BP; Baptista MS; Rossi LM
    Phys Chem Chem Phys; 2011 Sep; 13(33):14946-52. PubMed ID: 21769362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield.
    Clement S; Deng W; Camilleri E; Wilson BC; Goldys EM
    Sci Rep; 2016 Jan; 6():19954. PubMed ID: 26818819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal-lensing and phosphorescence studies of the quantum yield and lifetime of singlet molecular oxygen (1 delta g) sensitized by hematoporphyrin and related porphyrins in deuterated and non-deuterated ethanols.
    Redmond RW; Heihoff K; Braslavsky SE; Truscott TG
    Photochem Photobiol; 1987 Feb; 45(2):209-13. PubMed ID: 3562584
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.