These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14824080)

  • 1. Studies on the methane fermentation. VIII. Tracer experiments of fatty acid oxidation by methane bacteria.
    STADTMAN TC; BARKER HA
    J Bacteriol; 1951 Jan; 61(1):67-80. PubMed ID: 14824080
    [No Abstract]   [Full Text] [Related]  

  • 2. On the fermentation of carbon monoxide by pure cultures of methane bacteria.
    KLUYVER AJ; SCHNELLEN CG
    Arch Biochem; 1947 Jul; 14(1-2):57-70. PubMed ID: 20251332
    [No Abstract]   [Full Text] [Related]  

  • 3. [ON THE BIOMASS COMPOSITION AND SOME PECULIARITIES OF ITS GROWTH-STIMULATING ACTIVITY IN METHANE-PRODUCING BACTERIA].
    MIKHLIN ED; EROFEEVA NN; SOLOVEVA NV; SIMONOVA VG
    Mikrobiologiia; 1964; 33():210-5. PubMed ID: 14204014
    [No Abstract]   [Full Text] [Related]  

  • 4. METHANE FERMENTATION OF SEWAGE SLUDGE. I. THE INFLUENCE OF PHYSICAL AND CHEMICAL FACTORS ON THE DEVELOPMENT OF METHANE BACTERIA AND THE COURSE OF FERMENTATION.
    BURACZEWSKI G
    Acta Microbiol Pol (1952); 1964; 13():321-9. PubMed ID: 14270084
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of colonic fermentation on respiratory gas exchanges following a glucose load in man.
    Ritz P; Cloarec D; Beylot M; Champ M; Charbonnel B; Normand S; Krempf M
    Metabolism; 1993 Mar; 42(3):347-52. PubMed ID: 8487653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane fermentation of sewage sludge. 3. The rate of methane formation from short chain fatty acids.
    Buraczewski G
    Acta Microbiol Pol; 1966; 15(1):85-96. PubMed ID: 4160457
    [No Abstract]   [Full Text] [Related]  

  • 7. Biogeochemistry. The ongoing mystery of sea-floor methane.
    Alperin M; Hoehler T
    Science; 2010 Jul; 329(5989):288-9. PubMed ID: 20647456
    [No Abstract]   [Full Text] [Related]  

  • 8. Methane fermentation of sewage sludge. IV. Cyclic phenomena of methane fermentation at maximum concentration of acetic and butyric acids possible.
    Buraczewski G
    Acta Microbiol Pol B; 1970; 2(1):57-64. PubMed ID: 5427223
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on the aerobic oxidation of fatty acids by bacteria. III. The effect of 2,4-dinitrophenol on the oxidation of fatty acids by Serratia marcescens.
    SILLIKER JH; RITTENBERG SC
    J Bacteriol; 1952 Aug; 64(2):197-205. PubMed ID: 14955513
    [No Abstract]   [Full Text] [Related]  

  • 10. Fermentation of various glycolytic intermediates and other compounds by rumen micro-organisms, with particular reference to methane production.
    Czerkawski JW; Breckenridge G
    Br J Nutr; 1972 Jan; 27(1):131-46. PubMed ID: 5059377
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of berry seed residues on ruminal fermentation, methane concentration, milk production, and fatty acid proportions in the rumen and milk of dairy cows.
    Bryszak M; Szumacher-Strabel M; El-Sherbiny M; Stochmal A; Oleszek W; Roj E; Patra AK; Cieslak A
    J Dairy Sci; 2019 Feb; 102(2):1257-1273. PubMed ID: 30580953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield.
    Bayat AR; Tapio I; Vilkki J; Shingfield KJ; Leskinen H
    J Dairy Sci; 2018 Feb; 101(2):1136-1151. PubMed ID: 29224879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the aerobic oxidation of fatty acids by bacteria. II. Application of the technique of simultaneous adaptation to the study of the mechanism of fatty acid oxidation in Serratia marcescens.
    SILLIKER JH; RITTENBERG SC
    J Bacteriol; 1951 Jun; 61(6):661-73. PubMed ID: 14850425
    [No Abstract]   [Full Text] [Related]  

  • 14. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fatty acid derivatives on rumen methane and propionate in vitro.
    Van Nevel CJ; Demeyer DI; Henderickx HK
    Appl Microbiol; 1971 Feb; 21(2):365-6. PubMed ID: 5544299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of post fermentation cooling patterns on fatty acid profile, lipid oxidation and antioxidant features of cow and buffalo milk set yoghurt.
    Khan IT; Nadeem M; Imran M; Khalique A
    Lipids Health Dis; 2020 Apr; 19(1):74. PubMed ID: 32293468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment.
    Montag D; Schink B
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen concentrations in methane-forming cells probed by the ratios of reduced and oxidized coenzyme F420.
    de Poorter LMI; Geerts WJ; Keltjens JT
    Microbiology (Reading); 2005 May; 151(Pt 5):1697-1705. PubMed ID: 15870477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the aerobic oxidation of fatty acids by bacteria. IV. The effect of 2,4,6-trichlorophenol on the oxidation of caprate and its derivatives by Serratia marcescens.
    WALTMAN JM; RITTENBERG SC
    J Bacteriol; 1954 Nov; 68(5):585-8. PubMed ID: 13211561
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats.
    Abecia L; Toral PG; Martín-García AI; Martínez G; Tomkins NW; Molina-Alcaide E; Newbold CJ; Yáñez-Ruiz DR
    J Dairy Sci; 2012 Apr; 95(4):2027-36. PubMed ID: 22459848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.