BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 148275)

  • 21. Coupling factor ATPase from Escherichia coli. An uncA mutant (uncA401) with defective alpha subunit.
    Kanazawa H; Saito S; Futai M
    J Biochem; 1978 Dec; 84(6):1513-7. PubMed ID: 153904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy transduction in Escherichia coli. Genetic alteration of a membrane polypeptide of the (Ca2+,Mg2+)-ATPase.
    Simoni RD; Shandell A
    J Biol Chem; 1975 Dec; 250(24):9421-7. PubMed ID: 127796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The energy-linked transhydrogenase reaction in respiratory mutants of Escherichia coli K12.
    Cox GB; Newton NA; Butlin JD; Gibson F
    Biochem J; 1971 Nov; 125(2):489-93. PubMed ID: 4335691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of uncoupler on "downhill" substrate efflux of Escherichia coli is dependent on (Mg2+, Ca2+). Adenosine triphosphatase.
    Rotman B
    J Cell Physiol; 1976 Dec; 89(4):561-6. PubMed ID: 137904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and characterization of the inactive Ca2+, Mg2+-activated adenosine triphosphatase of the unc A- mutant Escherichia coli AN120.
    Bragg PD; Hou C
    Arch Biochem Biophys; 1977 Jan; 178(2):486-94. PubMed ID: 13731
    [No Abstract]   [Full Text] [Related]  

  • 26. Energy transduction in Escherichia coli: physiological and biochemical effects of mutation in the uncB locus.
    Hasan SM; Tsuchiya T; Rosen BP
    J Bacteriol; 1978 Jan; 133(1):108-13. PubMed ID: 145432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assembly of the adenosine triphosphatase complex in Escherichia coli: assembly of F0 is dependent on the formation of specific F1 subunits.
    Cox GB; Downie JA; Langman L; Senior AE; Ash G; Fayle DR; Gibson F
    J Bacteriol; 1981 Oct; 148(1):30-42. PubMed ID: 6457026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of several energy-coupling reactions in characterizing mutants of Escherichia coli K12 defective in oxidative phosphorylation.
    Schairer HU; Friedl P; Schmid BI; Vogel G
    Eur J Biochem; 1976 Jul; 66(2):257-68. PubMed ID: 133025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Escherichia coli mutant exhibiting temperature-sensitive ATP synthesis.
    Ito M; Nakamura M; Nagamune H; Morikawa N; Terada H
    Biochem Biophys Res Commun; 1986 Jul; 138(1):72-7. PubMed ID: 3527165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The F1F0-ATPase of Escherichia coli. Substitution of proline by leucine at position 64 in the c-subunit causes loss of oxidative phosphorylation.
    Fimmel AL; Jans DA; Langman L; James LB; Ash GR; Downie JA; Senior AE; Gibson F; Cox GB
    Biochem J; 1983 Aug; 213(2):451-8. PubMed ID: 6193778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of mutants of Escherichia coli uncoupled in oxidative phosphorylation using hypersensitivity to streptomycin.
    Muir ME; Wallace BJ
    Biochim Biophys Acta; 1979 Aug; 547(2):218-29. PubMed ID: 380650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salmonella typhimurium HfrA, a mutant in which adenosine triphosphate can drive amino acid transport but not energy-dependent nicotinamide nucleotide transhydrogenation.
    Kay WW; Bragg PD
    Biochem J; 1975 Jul; 150(1):21-9. PubMed ID: 128357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy coupling to active transport in anaerobically grown mutants of Escherichia Coli K12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1976 Mar; 154(3):731-4. PubMed ID: 133673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specialized transducing phage lambda carrying the genes for coupling factor of oxidative phosphorylation of Escherichia coli: increased synthesis of coupling factor on induction of prophage lambda asn.
    Kanazawa H; Miki T; Tamura F; Yura T; Futai M
    Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1126-30. PubMed ID: 155817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative phosphorylation by mutant Escherichia coli membranes with impaired proton permeability.
    Cox GB; Jans DA; Gibson F; Langman L; Senior AE; Fimmel AL
    Biochem J; 1983 Oct; 216(1):143-50. PubMed ID: 6316934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Escherichia coli mutants defective in the uncH gene.
    Humbert R; Brusilow WS; Gunsalus RP; Klionsky DJ; Simoni RD
    J Bacteriol; 1983 Jan; 153(1):416-22. PubMed ID: 6294057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Leeuwenhoek Lecture, 1981. The biochemical and genetic approach to the study of bioenergetics with the use of Escherichia coli: progress and prospects.
    Gibson F
    Proc R Soc Lond B Biol Sci; 1982 Apr; 215(1198):1-18. PubMed ID: 6127694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12.
    Poole RK; Haddock BA
    Biochem J; 1974 Oct; 144(1):77-85. PubMed ID: 4156832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mutant of Escherichia coli defective in the coupling of metabolic energy to active transport.
    Lieberman MA; Hong JS
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4395-9. PubMed ID: 4280071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of the altered subunit in the inactive F1ATPase of an Escherichia coli uncA mutant.
    Dunn SD
    Biochem Biophys Res Commun; 1978 May; 82(2):596-602. PubMed ID: 149548
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.