These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1482767)

  • 1. Regulation of an acetylcholine receptor LacZ transgene by muscle innervation.
    Salmon AM; Changeux JP
    Neuroreport; 1992 Nov; 3(11):973-6. PubMed ID: 1482767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An acetylcholine receptor alpha-subunit promoter conferring preferential synaptic expression in muscle of transgenic mice.
    Klarsfeld A; Bessereau JL; Salmon AM; Triller A; Babinet C; Changeux JP
    EMBO J; 1991 Mar; 10(3):625-32. PubMed ID: 1900467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colchicine-induced differential sprouting of the endplates on fast and slow muscle fibers in rat extensor digitorum longus, soleus and tibialis anterior muscles.
    Riley DA; Fahlman CS
    Brain Res; 1985 Mar; 329(1-2):83-95. PubMed ID: 3978464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal expression of acetylcholine receptor RNAs in innervated and denervated rat soleus muscle.
    Goldman D; Staple J
    Neuron; 1989 Aug; 3(2):219-28. PubMed ID: 2483113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix metalloproteinase 3 deletion preserves denervated motor endplates after traumatic nerve injury.
    Chao T; Frump D; Lin M; Caiozzo VJ; Mozaffar T; Steward O; Gupta R
    Ann Neurol; 2013 Feb; 73(2):210-23. PubMed ID: 23281061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent vs. neurotrophic modulation of acetylcholine receptor expression: Evidence from rat soleus and extensor digitorum longus muscles confirms the exclusive role of activity.
    Buffelli M; Tognana E; Cangiano A; Busetto G
    Eur J Neurosci; 2018 Jun; 47(12):1474-1481. PubMed ID: 29904972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential muscle-driven synaptic remodeling in the neuromuscular junction after denervation.
    Yampolsky P; Pacifici PG; Witzemann V
    Eur J Neurosci; 2010 Feb; 31(4):646-58. PubMed ID: 20148944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural control of skeletal muscle cholinesterase: a study using organ-cultured rat muscle.
    Davey B; Younkin LH; Younkin SG
    J Physiol; 1979 Apr; 289():501-15. PubMed ID: 88516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.
    Salmon AM; Bruand C; Cardona A; Changeux JP; Berrih-Aknin S
    J Clin Invest; 1998 Jun; 101(11):2340-50. PubMed ID: 9616205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of acetylcholine receptor channel conversion on muscle activity at denervated neonatal rat endplates.
    Brenner HR
    Neurosci Lett; 1988 May; 88(2):161-6. PubMed ID: 2454435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in acetylcholine receptor function induce shifts in muscle fiber type composition.
    Jin TE; Wernig A; Witzemann V
    FEBS J; 2008 May; 275(9):2042-54. PubMed ID: 18384381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular junctions and alpha-bungarotoxin-binding sites in denervated and contralateral cat skeletal muscles.
    Steinbach JH
    J Physiol; 1981; 313():513-28. PubMed ID: 7277234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The non-synaptic expression of transforming growth factor-beta 2 is neurally regulated and varies between skeletal muscle fibre types.
    McLennan IS; Koishi K; Zhang M; Murakami N
    Neuroscience; 1998 Dec; 87(4):845-53. PubMed ID: 9759972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration in myosatellite cell commitment with muscle maturation.
    Yang J; Kelly R; Daood M; Ontell M; Watchko J; Ontell M
    Dev Dyn; 1998 Feb; 211(2):141-52. PubMed ID: 9489768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholinesterase histochemistry in the non-endplate region of skeletal muscles and effect of denervation.
    Nakano S; Akiguchi I; Yasuda Y; Nakamura S; Kameyama M; Kimura J
    Muscle Nerve; 1990 Aug; 13(8):687-96. PubMed ID: 2166910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural regulation of gene expression by an acetylcholine receptor promoter in muscle of transgenic mice.
    Merlie JP; Kornhauser JM
    Neuron; 1989 Apr; 2(4):1295-300. PubMed ID: 2627372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migration of lacZ positive cells from the tibialis anterior to the extensor digitorum longus muscle of the X-linked muscular dystrophic (mdx) mouse.
    Watt DJ; Karasinski J; England MA
    J Muscle Res Cell Motil; 1993 Feb; 14(1):121-32. PubMed ID: 8478422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers.
    Sanes JR; Johnson YR; Kotzbauer PT; Mudd J; Hanley T; Martinou JC; Merlie JP
    Development; 1991 Dec; 113(4):1181-91. PubMed ID: 1811935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR gamma-to-epsilon switch.
    Missias AC; Chu GC; Klocke BJ; Sanes JR; Merlie JP
    Dev Biol; 1996 Oct; 179(1):223-38. PubMed ID: 8873766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses.
    Witzemann V; Brenner HR; Sakmann B
    J Cell Biol; 1991 Jul; 114(1):125-41. PubMed ID: 1646821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.