These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 148291)

  • 1. 5-[125I]Iodonaphthyl azide, a reagent to determine the penetration of proteins into the lipid bilayer of biological membranes.
    Bercovici T; Gitler C
    Biochemistry; 1978 Apr; 17(8):1484-9. PubMed ID: 148291
    [No Abstract]   [Full Text] [Related]  

  • 2. Red cell membrane glycophorin labeling from within the lipid bilayer.
    Kahane I; Gitler C
    Science; 1978 Jul; 201(4353):351-2. PubMed ID: 663661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes.
    Pak CC; Puri A; Blumenthal R
    Biochemistry; 1997 Jul; 36(29):8890-6. PubMed ID: 9220976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of nearest neighbors to specific fluorescently tagged ligands in rod outer segment and lymphocyte plasma membranes by photosensitization of 5-iodonaphthyl 1-azide.
    Raviv Y; Bercovici T; Gitler C; Salomon Y
    Biochemistry; 1989 Feb; 28(3):1313-9. PubMed ID: 2496754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, composition, enzymatic activities of human erythrocyte and sarcoplasmic reticulum membrane films.
    Pattus F; Rothen C; Streit M; Zahler P
    Biochim Biophys Acta; 1981 Sep; 647(1):29-39. PubMed ID: 6457641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of photosensitive hydrophobic probes to label the membrane of the human erythrocyte.
    Wells E; Findlay JB
    Biochem J; 1979 May; 179(2):257-64. PubMed ID: 486080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoactive covalent labeling of membrane components from within the lipid core.
    Klip A; Gitler C
    Biochem Biophys Res Commun; 1974 Oct; 60(3):1155-62. PubMed ID: 4279663
    [No Abstract]   [Full Text] [Related]  

  • 8. Labeling of chromatophore membranes and reaction centers from the photosynthetic bacterium Rhodospirillum rubrum with the hydrophobic marker 5-[125I]iodonaphthyl-1-azide.
    Odermatt E; Snozzi M; Bachofen R
    Biochim Biophys Acta; 1980 Jul; 591(2):372-80. PubMed ID: 7397129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragmentation of the band 3 polypeptide from human erythrocyte membranes. Identification of regions likely to interact with the lipid bilayer.
    Drickamer LK
    J Biol Chem; 1977 Oct; 252(19):6909-17. PubMed ID: 893450
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the location and orientation of proteins in the sarcoplasmic reticulum.
    Thorley-Lawson DA; Green NM
    Eur J Biochem; 1973 Dec; 40(2):403-13. PubMed ID: 4131254
    [No Abstract]   [Full Text] [Related]  

  • 11. Hydrophobic photolabelling of sarcoplasmic reticulum with [125I]TID.
    Gutweniger HE; Montecucco C
    Int J Biochem; 1985; 17(8):867-71. PubMed ID: 4043508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible penetration of alpha-glutathione S-transferase into biological membranes revealed by photosensitized labelling in situ.
    Merezhinskaya N; Kuijpers GA; Raviv Y
    Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):597-604. PubMed ID: 9794800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P nuclear magnetic resonance studies of the phospholipid-protein interface in cell membranes.
    Yeagle PL
    Biophys J; 1982 Jan; 37(1):227-39. PubMed ID: 6120013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the structure, composition and function of sarcoplasmic-reticulum membrane during development.
    Sarzala MG; Pilarska M; Zubrzycka E; Michalak M
    Eur J Biochem; 1975 Sep; 57(1):25-34. PubMed ID: 126156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Architecture and asymmetry of biomembranes.
    Lenaz G; Sechi AM
    Ital J Biochem; 1976; 25(6):427-516. PubMed ID: 192699
    [No Abstract]   [Full Text] [Related]  

  • 16. Resolution of the paradox of red cell shape changes in low and high pH.
    Gedde MM; Yang E; Huestis WH
    Biochim Biophys Acta; 1999 Mar; 1417(2):246-53. PubMed ID: 10082800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interaction of spin-labeled saturated and unsaturated fatty acid derivatives with biological membrane lipid and protein components].
    Ritov VB; Kagan VE; Maigkova GI; Moskvin MN; Komarov PG
    Biofizika; 1976; 21(4):763-5. PubMed ID: 188490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sarcoplasmic reticulum].
    Boldyrev AA; Lopina OD
    Usp Fiziol Nauk; 1977; 8(3):48-73. PubMed ID: 143148
    [No Abstract]   [Full Text] [Related]  

  • 19. Activation of 5-[125I]iodonaphthyl-1-azide via excitation of fluorescent (N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)) lipid analogs in living cells. A potential tool for identification of compartment-specific proteins and proteins involved in intracellular transport and metabolism of lipids.
    Rosenwald AG; Pagano RE; Raviv Y
    J Biol Chem; 1991 May; 266(15):9814-21. PubMed ID: 2033068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photolabeling of staphylococcal alpha-toxin from within rabbit erythrocyte membranes.
    Thelestam M; Jolivet-Reynaud C; Alouf JE
    Biochem Biophys Res Commun; 1983 Mar; 111(2):444-9. PubMed ID: 6838569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.