These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 14830230)

  • 1. Studies on the mechanism of rubber formation in the guayule. III. Experiments with isotopic carbon.
    ARREGUIN B; BONNER J; WOOD BJ
    Arch Biochem Biophys; 1951 Apr; 31(2):234-47. PubMed ID: 14830230
    [No Abstract]   [Full Text] [Related]  

  • 2. Photosynthesis and assimilate partitioning between carbohydrates and isoprenoid products in vegetatively active and dormant guayule: physiological and environmental constraints on rubber accumulation in a semiarid shrub.
    Salvucci ME; Barta C; Byers JA; Canarini A
    Physiol Plant; 2010 Dec; 140(4):368-79. PubMed ID: 20727105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of rubber biosynthesis in guayule (Parthenium argentatum gray).
    Stonebloom SH; Scheller HV
    BMC Plant Biol; 2019 Feb; 19(1):71. PubMed ID: 30755179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, characterization, and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles.
    Pan Z; Herickhoff L; Backhaus RA
    Arch Biochem Biophys; 1996 Aug; 332(1):196-204. PubMed ID: 8806726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biochemistry of rubber formation in the guayule; rubber formation in seedlings.
    BONNER J; ARREGUIN B
    Arch Biochem; 1949 Mar; 21(1):109-24. PubMed ID: 18113495
    [No Abstract]   [Full Text] [Related]  

  • 6. cis-Polyisoprene Synthesis in Guayule Plants (Parthenium argentatum Gray) Exposed to Low, Nonfreezing Temperatures.
    Goss RA; Benedict CR; Keithly JH; Nessler CL; Stipanovic RD
    Plant Physiol; 1984 Mar; 74(3):534-7. PubMed ID: 16663456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biochemistry of rubber formation in the guayule. II. Rubber formation in aseptic tissue cultures.
    ARREGUIN B; BONNER J
    Arch Biochem; 1950 Apr; 26(2):178-86. PubMed ID: 15411190
    [No Abstract]   [Full Text] [Related]  

  • 8. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue.
    Ponciano G; McMahan CM; Xie W; Lazo GR; Coffelt TA; Collins-Silva J; Nural-Taban A; Gollery M; Shintani DK; Whalen MC
    Phytochemistry; 2012 Jul; 79():57-66. PubMed ID: 22608127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro.
    Kim IJ; Ryu SB; Kwak YS; Kang H
    J Exp Bot; 2004 Feb; 55(396):377-85. PubMed ID: 14718497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical bioinduction of rubber in guayule plant.
    Yokoyama H; Hayman EP; Hsu WJ; Poling SM; Bauman AJ
    Science; 1977 Sep; 197(4308):1076-8. PubMed ID: 17836076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Guayule (
    Jara FM; García-Martínez MLM; López-Córcoles H; Carrión ME; Zalacain A; Carmona M
    Plants (Basel); 2024 Apr; 13(8):. PubMed ID: 38674500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rubber production in guayule: determination of rubber producing potential.
    Macrae S; Gilliland MG; Van Staden J
    Plant Physiol; 1986 Aug; 81(4):1027-32. PubMed ID: 16664938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of isotopic carbon in organic compounds.
    WILZBACH KE; SYKES WY
    Science; 1954 Sep; 120(3117):494-6. PubMed ID: 13195681
    [No Abstract]   [Full Text] [Related]  

  • 14. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.
    Guillaume T; Damris M; Kuzyakov Y
    Glob Chang Biol; 2015 Sep; 21(9):3548-60. PubMed ID: 25707391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the toxicity and skin effects of compounds used in the rubber and plastics industries. III. Carcinogenicity of carbon black extracts.
    VON HAAM E; MALLETTE FS
    AMA Arch Ind Hyg Occup Med; 1952 Sep; 6(3):237-42. PubMed ID: 14952048
    [No Abstract]   [Full Text] [Related]  

  • 16. Seasonal Variations in Rubber Biosynthesis, 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase, and Rubber Transferase Activities in Parthenium argentatum in the Chihuahuan Desert.
    Ji W; Benedict CR; Foster MA
    Plant Physiol; 1993 Oct; 103(2):535-542. PubMed ID: 12231959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical research using compounds labeled with radioactive carbon and hydrogen as tracers.
    LEROY GV
    Ann Intern Med; 1955 Feb; 42(2):239-50. PubMed ID: 14350456
    [No Abstract]   [Full Text] [Related]  

  • 18. Modular assembly of transposable element arrays by microsatellite targeting in the guayule and rice genomes.
    Valdes Franco JA; Wang Y; Huo N; Ponciano G; Colvin HA; McMahan CM; Gu YQ; Belknap WR
    BMC Genomics; 2018 Apr; 19(1):271. PubMed ID: 29673330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.
    Lei ZY; Liu T; Li WJ; Shi XH; Fan DL
    Int J Nanomedicine; 2016; 11():5563-5572. PubMed ID: 27822035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potent contact allergen in the rubber plant guayule (Parthenium argentatum).
    Rodriguez E; Reynolds GW; Thompson JA
    Science; 1981 Mar; 211(4489):1444-5. PubMed ID: 7466403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.