These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1483383)

  • 1. Expression and potential functions of G-protein alpha subunits in embryos of Xenopus laevis.
    Otte AP; McGrew LL; Olate J; Nathanson NM; Moon RT
    Development; 1992 Sep; 116(1):141-6. PubMed ID: 1483383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development.
    Baker JC; Beddington RS; Harland RM
    Genes Dev; 1999 Dec; 13(23):3149-59. PubMed ID: 10601040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrin alpha subunit mRNAs are differentially expressed in early Xenopus embryos.
    Whittaker CA; DeSimone DW
    Development; 1993 Apr; 117(4):1239-49. PubMed ID: 8404528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic induction of dorsal mesoderm by overexpression of Xwnt-8 elevates the neural competence of Xenopus ectoderm.
    Otte AP; Moon RT
    Dev Biol; 1992 Jul; 152(1):184-7. PubMed ID: 1385790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of BMP-4/msx-1 and FGF pathways in neural induction in the Xenopus embryo.
    Ishimura A; Maeda R; Takeda M; Kikkawa M; Daar IO; Maéno M
    Dev Growth Differ; 2000 Aug; 42(4):307-16. PubMed ID: 10969730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GR transcripts are localized during early Xenopus laevis embryogenesis and overexpression of GR inhibits differentiation after dexamethasone treatment.
    Gao X; Stegeman BI; Lanser P; Koster JG; Destrée OH
    Biochem Biophys Res Commun; 1994 Mar; 199(2):734-41. PubMed ID: 8135817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.
    Snir M; Ofir R; Elias S; Frank D
    EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos.
    Leclerc C; Webb SE; Daguzan C; Moreau M; Miller AL
    J Cell Sci; 2000 Oct; 113 Pt 19():3519-29. PubMed ID: 10984442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle.
    Blitz IL; Cho KW
    Development; 1995 Apr; 121(4):993-1004. PubMed ID: 7743941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo.
    Shibata K; Ishimura A; Maéno M
    Biochem Biophys Res Commun; 1998 Nov; 252(1):241-8. PubMed ID: 9813177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the guanine nucleotide-binding protein Go correlates with the state of neural competence in the amphibian embryo.
    Pituello F; Homburger V; Saint-Jeannet JP; Audigier Y; Bockaert J; Duprat AM
    Dev Biol; 1991 Jun; 145(2):311-22. PubMed ID: 1904035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural induction and patterning by fibroblast growth factor, notochord and somite tissue in Xenopus.
    Barnett MW; Old RW; Jones EA
    Dev Growth Differ; 1998 Feb; 40(1):47-57. PubMed ID: 9563910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning.
    Curran KL; Grainger RM
    Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGF signaling and the anterior neural induction in Xenopus.
    Hongo I; Kengaku M; Okamoto H
    Dev Biol; 1999 Dec; 216(2):561-81. PubMed ID: 10642793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein.
    Muñoz-Sanjuán I; Bell E; Altmann CR; Vonica A; Brivanlou AH
    Development; 2002 Dec; 129(23):5529-40. PubMed ID: 12403722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.
    Pieper M; Ahrens K; Rink E; Peter A; Schlosser G
    Development; 2012 Mar; 139(6):1175-87. PubMed ID: 22318231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos.
    Dekker EJ; Vaessen MJ; van den Berg C; Timmermans A; Godsave S; Holling T; Nieuwkoop P; Geurts van Kessel A; Durston A
    Development; 1994 Apr; 120(4):973-85. PubMed ID: 7600972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural crest induction in Xenopus: evidence for a two-signal model.
    LaBonne C; Bronner-Fraser M
    Development; 1998 Jul; 125(13):2403-14. PubMed ID: 9609823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeogenetic neural induction in Xenopus.
    Servetnick M; Grainger RM
    Dev Biol; 1991 Sep; 147(1):73-82. PubMed ID: 1879617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.