These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1483433)

  • 21. 13C-n.m.r. of the cyanylated beta-lactoglobulins: evidence that Cys-121 provides the thiol group of beta-lactoglobulins A and B.
    Phelan P; Malthouse JP
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):511-6. PubMed ID: 8093004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles.
    Serafimova IM; Pufall MA; Krishnan S; Duda K; Cohen MS; Maglathlin RL; McFarland JM; Miller RM; Frödin M; Taunton J
    Nat Chem Biol; 2012 Apr; 8(5):471-6. PubMed ID: 22466421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping of reactive sulfhydryls in avian liver 3-hydroxy-3-methylglutaryl coenzyme A synthase.
    Miziorko HM; Behnke CE; Wang HH
    Biochim Biophys Acta; 1990 Dec; 1041(3):273-8. PubMed ID: 1980083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ alkylation with acrylamide for identification of cysteinyl residues in proteins during one- and two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis.
    Mineki R; Taka H; Fujimura T; Kikkawa M; Shindo N; Murayama K
    Proteomics; 2002 Dec; 2(12):1672-81. PubMed ID: 12469337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins.
    Zeng J; Davies MJ
    Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein-peptide interaction: study of heat-induced aggregation and gelation of β-lactoglobulin in the presence of two peptides from its own hydrolysate.
    Kosters HA; Wierenga PA; de Vries R; Gruppen H
    J Agric Food Chem; 2013 May; 61(18):4218-25. PubMed ID: 23586481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence of the cysteinyl-containing peptides of 4-aminobutyrate aminotransferase. Identification of sulfhydryl residues involved in intersubunit linkage.
    Kim YT; Churchich JE
    Eur J Biochem; 1989 May; 181(2):397-401. PubMed ID: 2496985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and sequence verification of thiolated deoxyoligonucleotides used for microarray construction.
    Van Aerschot A; Rozenski J
    J Am Soc Mass Spectrom; 2006 Oct; 17(10):1397-1400. PubMed ID: 16899373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid sequence of the 203-residue fragment of the heavy chain of chicken gizzard myosin containing the SH1-type cysteine residue.
    Onishi H; Maita T; Miyanishi T; Watanabe S; Matsuda G
    J Biochem; 1986 Dec; 100(6):1433-47. PubMed ID: 3571180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Release of 5-fluorouracil from poly(acrylamide-co-monopropyl itaconate) hydrogels.
    Blanco MD; García O; Olmo R; Teijón JM; Katime I
    J Chromatogr B Biomed Appl; 1996 May; 680(1-2):243-53. PubMed ID: 8798904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Covalent modification of lysine residues by allyl isothiocyanate in physiological conditions: plausible transformation of isothiocyanate from thiol to amine.
    Nakamura T; Kawai Y; Kitamoto N; Osawa T; Kato Y
    Chem Res Toxicol; 2009 Mar; 22(3):536-42. PubMed ID: 19216492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of acrylamide metabolite, mercapturic acid by high performance liquid chromatography.
    Wu YQ; Yu AR; Tang XY; Zhang J; Cui T
    Biomed Environ Sci; 1993 Sep; 6(3):273-80. PubMed ID: 8292272
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Ahangarpour M; Kavianinia I; Hume PA; Harris PWR; Brimble MA
    J Am Chem Soc; 2022 Aug; 144(30):13652-13662. PubMed ID: 35858283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin in oil-in-water emulsions.
    Elias RJ; McClements DJ; Decker EA
    J Agric Food Chem; 2005 Dec; 53(26):10248-53. PubMed ID: 16366723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anomalous "unquenching" of the fluorescence decay times of beta-lactoglobulin induced by the known quencher acrylamide.
    Portugal CA; Crespo JG; Lima JC
    J Photochem Photobiol B; 2006 Feb; 82(2):117-26. PubMed ID: 16288883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the acid/base and redox chemistry of phytochelatin analogue peptides.
    Spain SM; Rabenstein DL
    Anal Chem; 2003 Aug; 75(15):3712-9. PubMed ID: 14572034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cysteinyl peptides labeled by dibromobutanedione in reaction with rabbit muscle pyruvate kinase.
    Vollmer SH; Colman RF
    Protein Sci; 1992 May; 1(5):678-87. PubMed ID: 1304366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new derivatization approach with D-cysteine for the sensitive and simple analysis of acrylamide in foods by liquid chromatography-tandem mass spectrometry.
    Lim HH; Shin HS
    J Chromatogr A; 2014 Sep; 1361():117-24. PubMed ID: 25130090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covalent structure of botulinum neurotoxin type B; location of sulfhydryl groups and disulfide bridge and identification of C-termini of light and heavy chains.
    Antharavally BS; DasGupta BR
    J Protein Chem; 1998 Jul; 17(5):417-28. PubMed ID: 9717738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic pathways of formation of acrylamide from different amino acids.
    Yaylayan VA; Locas CP; Wnorowski A; O'Brien J
    Adv Exp Med Biol; 2005; 561():191-203. PubMed ID: 16438299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.