These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1483501)

  • 21. Analysis of tryptic peptides from the C-terminal region of alpha-crystallin from cataractous and normal human lenses.
    Takemoto LJ; Emmons T; Granstrom D; Griffin PR; Shabanowitz J; Hunt DF
    Exp Eye Res; 1990 Jun; 50(6):695-702. PubMed ID: 2373163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of gamma D- and gamma s-crystallins in human lenses.
    Srivastava OP; Srivastava K
    Biochem Biophys Res Commun; 1998 Dec; 253(2):288-94. PubMed ID: 9878530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses.
    Manski W; Malinowski K
    Exp Eye Res; 1985 Feb; 40(2):179-90. PubMed ID: 3884353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative measurement of young human eye lens crystallins by direct injection Fourier transform ion cyclotron resonance mass spectrometry.
    Robinson NE; Lampi KJ; Speir JP; Kruppa G; Easterling M; Robinson AB
    Mol Vis; 2006 Jun; 12():704-11. PubMed ID: 16807530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A covalent change in alpha crystallin during opacification of the Emory mouse lens.
    Takemoto L; Horwitz J; Kuck J; Kuck K
    Lens Eye Toxic Res; 1989; 6(3):431-41. PubMed ID: 2486937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-dependent deamidation of alpha B-crystallin.
    Groenen PJ; van Dongen MJ; Voorter CE; Bloemendal H; de Jong WW
    FEBS Lett; 1993 May; 322(1):69-72. PubMed ID: 8482371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-related changes in bovine alpha-crystallin and high-molecular-weight protein.
    Carver JA; Nicholls KA; Aquilina JA; Truscott RJ
    Exp Eye Res; 1996 Dec; 63(6):639-47. PubMed ID: 9068371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent changes at the N- and C-terminal regions of gamma crystallin during aging of the normal human lens.
    Takemoto L; Kodama T; Takemoto D
    Exp Eye Res; 1987 Aug; 45(2):207-14. PubMed ID: 3653290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses.
    Thampi P; Hassan A; Smith JB; Abraham EC
    Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3265-72. PubMed ID: 12356833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism of crystallin fragments in cell-free extracts of bovine lens: effects of ageing and oxygen free-radicals.
    Hipkiss AR; Carmichael PL; Zimmermann B
    Acta Biol Hung; 1991; 42(1-3):243-63. PubMed ID: 1844313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cleavage from the N-terminal region of beta Bp crystallin during aging of the human lens.
    Takemoto L; Takemoto D; Brown G; Takehana M; Smith J; Horwitz J
    Exp Eye Res; 1987 Sep; 45(3):385-92. PubMed ID: 3666063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of lens alpha and gamma crystallins during aging of the bovine lens.
    Peterson J; Radke G; Takemoto L
    Exp Eye Res; 2005 Dec; 81(6):680-9. PubMed ID: 15967431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalent change in alpha crystallin during human senile cataractogenesis.
    Takemoto L; Granstrom D; Kodama T; Wong R
    Biochem Biophys Res Commun; 1988 Feb; 150(3):987-95. PubMed ID: 3342073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of UV-A light on the chaperone-like properties of young and old lens alpha-crystallin.
    Weinreb O; van Boekel MA; Dovrat A; Bloemendal H
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):191-8. PubMed ID: 10634620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function.
    Takata T; Nakamura-Hirota T; Inoue R; Morishima K; Sato N; Sugiyama M; Fujii N
    FEBS J; 2018 Jun; 285(12):2263-2277. PubMed ID: 29676852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract.
    Garner B; Shaw DC; Lindner RA; Carver JA; Truscott RJ
    Biochim Biophys Acta; 2000 Feb; 1476(2):265-78. PubMed ID: 10669791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the posttranslational modifications of bovine lens alpha B-crystallins by mass spectrometry.
    Smith JB; Sun Y; Smith DL; Green B
    Protein Sci; 1992 May; 1(5):601-8. PubMed ID: 1304359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization, cloning, and expression of porcine alpha B crystallin.
    Liao JH; Hung CC; Lee JS; Wu SH; Chiou SH
    Biochem Biophys Res Commun; 1998 Mar; 244(1):131-7. PubMed ID: 9514893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.