These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 1483507)
1. Colloid osmotic pressure of steer crystallins: implications for the origin of the refractive index gradient and transparency of the lens. Magid AD; Kenworthy AK; McIntosh TJ Exp Eye Res; 1992 Oct; 55(4):615-27. PubMed ID: 1483507 [TBL] [Abstract][Full Text] [Related]
2. Colloid osmotic pressure of steer alpha- and beta-crystallins: possible functional roles for lens crystallin distribution and structural diversity. Kenworthy AK; Magid AD; Oliver TN; McIntosh TJ Exp Eye Res; 1994 Jul; 59(1):11-30. PubMed ID: 7835391 [TBL] [Abstract][Full Text] [Related]
3. The protein concentration gradient within eye lens might originate from constant osmotic pressure coupled to differential interactive properties of crystallins. Vérétout F; Tardieu A Eur Biophys J; 1989; 17(2):61-8. PubMed ID: 2766998 [TBL] [Abstract][Full Text] [Related]
4. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index. Zhao H; Magone MT; Schuck P Phys Biol; 2011 Aug; 8(4):046004. PubMed ID: 21566271 [TBL] [Abstract][Full Text] [Related]
6. Protein interactions in the calf eye lens: interactions between beta-crystallins are repulsive whereas in gamma-crystallins they are attractive. Tardieu A; Vérétout F; Krop B; Slingsby C Eur Biophys J; 1992; 21(1):1-12. PubMed ID: 1516556 [TBL] [Abstract][Full Text] [Related]
7. 13C NMR studies of protein motional dynamics in bovine, human, rat, and chicken ocular lenses. Rydzewski JM; Wang SX; Stevens A; Serdahl C; Schleich T Exp Eye Res; 1993 Mar; 56(3):305-16. PubMed ID: 8472786 [TBL] [Abstract][Full Text] [Related]
8. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper. Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558 [TBL] [Abstract][Full Text] [Related]
9. Interactions of lens proteins. Concentration dependence of beta-crystallin aggregation. Siezen RJ; Anello RD; Thomson JA Exp Eye Res; 1986 Sep; 43(3):293-303. PubMed ID: 3780875 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular order within the lens: 1H NMR spectroscopic evidence for specific crystallin-crystallin interactions. Cooper PG; Aquilina JA; Truscott RJ; Carver JA Exp Eye Res; 1994 Nov; 59(5):607-16. PubMed ID: 9492762 [TBL] [Abstract][Full Text] [Related]
11. Ageing and changes in protein conformation in the human lens: a Raman microspectroscopic study. Siebinga I; Vrensen GF; Otto K; Puppels GJ; De Mul FF; Greve J Exp Eye Res; 1992 May; 54(5):759-67. PubMed ID: 1623961 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of alpha-crystallin solutions. Vérétout F; Delaye M; Tardieu A J Mol Biol; 1989 Feb; 205(4):713-28. PubMed ID: 2926823 [TBL] [Abstract][Full Text] [Related]
13. Spatial and temporal mapping of the age-related changes in human lens crystallins. McFall-Ngai MJ; Ding LL; Takemoto LJ; Horwitz J Exp Eye Res; 1985 Dec; 41(6):745-58. PubMed ID: 3830737 [TBL] [Abstract][Full Text] [Related]
14. Age-related variations in the distribution of crystallins within the bovine lens. Bessems GJ; De Man BM; Bours J; Hoenders HJ Exp Eye Res; 1986 Dec; 43(6):1019-30. PubMed ID: 3817022 [TBL] [Abstract][Full Text] [Related]
15. Electrostatic parameters of the theoretical quaternary structure of bovine alpha-crystallin. Singh K; Groth-Vasselli B; Farnsworth PN Int J Biol Macromol; 1996 Apr; 18(3):205-9. PubMed ID: 8729032 [TBL] [Abstract][Full Text] [Related]
16. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract. Bessems GJ; Hoenders HJ; Wollensak J Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209 [TBL] [Abstract][Full Text] [Related]
17. Evolution of graded refractive index in squid lenses. Sweeney AM; Des Marais DL; Ban YE; Johnsen S J R Soc Interface; 2007 Aug; 4(15):685-98. PubMed ID: 17293312 [TBL] [Abstract][Full Text] [Related]
18. [Comparative study of the crystallin supramolecular structure in the carp, frog, and rat lenses by small-angle roentgen ray scattering]. Krivandin AV; Muranov KO Biofizika; 1999; 44(6):1088-93. PubMed ID: 10707284 [TBL] [Abstract][Full Text] [Related]
19. Changes in the refractive index of lens fibre membranes during maturation--impact on lens transparency. Michael R; van Marle J; Vrensen GF; van den Berg TJ Exp Eye Res; 2003 Jul; 77(1):93-9. PubMed ID: 12823992 [TBL] [Abstract][Full Text] [Related]
20. [Absence of small-angle maximums on the x-ray images of ocular lens tissue]. Krivandin AV; Feĭgin LA Biofizika; 1990; 35(3):461-3. PubMed ID: 2207188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]