These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 1483758)
1. Myoelectrical and metabolic changes in muscle fatigue. Béliveau L; Van Hoecke J; Garapon-Bar C; Gaillard E; Herry JP; Atlan G; Bouissou P Int J Sports Med; 1992 Oct; 13 Suppl 1():S153-5. PubMed ID: 1483758 [TBL] [Abstract][Full Text] [Related]
2. EMG spectral shift- and 31P-NMR-determined intracellular pH in fatigued human biceps brachii muscle. Béliveau L; Helal JN; Gaillard E; Van Hoecke J; Atlan G; Bouissou P Neurology; 1991 Dec; 41(12):1998-2001. PubMed ID: 1745364 [TBL] [Abstract][Full Text] [Related]
3. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. Cady EB; Jones DA; Lynn J; Newham DJ J Physiol; 1989 Nov; 418():311-25. PubMed ID: 2621621 [TBL] [Abstract][Full Text] [Related]
4. Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined 31P-magnetic resonance spectroscopy-surface electromyogram (MRS-SEMG) study. Bendahan D; Badier M; Jammes Y; Confort-Gouny S; Salvan AM; Guillot C; Cozzone PJ Clin Sci (Lond); 1998 Mar; 94(3):279-86. PubMed ID: 9616262 [TBL] [Abstract][Full Text] [Related]
5. Surface EMG and motor unit activity of partially denervated human muscle during fatiguing submaximal isometric contraction. Giroux C; Maton B Electromyogr Clin Neurophysiol; 1990; 30(5):283-91. PubMed ID: 2226272 [TBL] [Abstract][Full Text] [Related]
6. Electromyogram spectrum changes during sustained contraction related to proton and diprotonated inorganic phosphate accumulation: a 31P nuclear magnetic resonance study on human calf muscles. Laurent D; Portero P; Goubel F; Rossi A Eur J Appl Physiol Occup Physiol; 1993; 66(3):263-8. PubMed ID: 8386617 [TBL] [Abstract][Full Text] [Related]
7. Changes in presumed motor cortical activity during fatiguing muscle contraction in humans. Seifert T; Petersen NC Acta Physiol (Oxf); 2010 Jul; 199(3):317-26. PubMed ID: 20136794 [TBL] [Abstract][Full Text] [Related]
8. Changes in soleus motoneuron pool reflex excitability and surface EMG parameters during fatiguing low- vs. high-intensity isometric contractions. Pääsuke M; Rannama L; Ereline J; Gapeyeva H; Oöpik V Electromyogr Clin Neurophysiol; 2007; 47(7-8):341-50. PubMed ID: 18051628 [TBL] [Abstract][Full Text] [Related]
9. Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery. Miller RG; Giannini D; Milner-Brown HS; Layzer RB; Koretsky AP; Hooper D; Weiner MW Muscle Nerve; 1987; 10(9):810-21. PubMed ID: 3683452 [TBL] [Abstract][Full Text] [Related]
10. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743 [TBL] [Abstract][Full Text] [Related]
11. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Degroot M; Massie BM; Boska M; Gober J; Miller RG; Weiner MW Muscle Nerve; 1993 Jan; 16(1):91-8. PubMed ID: 8423837 [TBL] [Abstract][Full Text] [Related]
12. Surface EMG power spectrum and intramuscular pH in human vastus lateralis muscle during dynamic exercise. Bouissou P; Estrade PY; Goubel F; Guezennec CY; Serrurier B J Appl Physiol (1985); 1989 Sep; 67(3):1245-9. PubMed ID: 2793717 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue. Vestergaard-Poulsen P; Thomsen C; Sinkjaer T; Stubgaard M; Rosenfalck A; Henriksen O Electroencephalogr Clin Neurophysiol; 1992 Dec; 85(6):402-11. PubMed ID: 1282459 [TBL] [Abstract][Full Text] [Related]
14. Neuromuscular activation of vastus intermedius muscle during fatiguing exercise. Watanabe K; Akima H J Electromyogr Kinesiol; 2010 Aug; 20(4):661-6. PubMed ID: 20133154 [TBL] [Abstract][Full Text] [Related]
15. Electromechanical changes during electrically induced and maximal voluntary contractions: surface and intramuscular EMG responses during sustained maximal voluntary contraction. Moritani T; Muro M; Kijima A; Gaffney FA; Parsons D Exp Neurol; 1985 Jun; 88(3):484-99. PubMed ID: 2987016 [TBL] [Abstract][Full Text] [Related]
16. Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue. Baker AJ; Kostov KG; Miller RG; Weiner MW J Appl Physiol (1985); 1993 May; 74(5):2294-300. PubMed ID: 8335559 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous 31P-NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: a correlation study. Vestergaard-Poulsen P; Thomsen C; Sinkjaer T; Henriksen O J Appl Physiol (1985); 1995 Nov; 79(5):1469-78. PubMed ID: 8594002 [TBL] [Abstract][Full Text] [Related]
18. Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. Fuglevand AJ; Zackowski KM; Huey KA; Enoka RM J Physiol; 1993 Jan; 460():549-72. PubMed ID: 8387589 [TBL] [Abstract][Full Text] [Related]
19. Motor unit synchronization is increased in biceps brachii after exercise-induced damage to elbow flexor muscles. Dartnall TJ; Nordstrom MA; Semmler JG J Neurophysiol; 2008 Feb; 99(2):1008-19. PubMed ID: 18171708 [TBL] [Abstract][Full Text] [Related]
20. Discharge characteristics of motor units and the surface EMG during fatiguing isometric contractions at submaximal tensions. Petrofsky JS; Phillips CA Aviat Space Environ Med; 1985 Jun; 56(6):581-6. PubMed ID: 2990400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]