BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 1483935)

  • 1. Quercetin, an inhibitor of heat shock protein synthesis, inhibits the acquisition of thermotolerance in a human colon carcinoma cell line.
    Koishi M; Hosokawa N; Sato M; Nakai A; Hirayoshi K; Hiraoka M; Abe M; Nagata K
    Jpn J Cancer Res; 1992 Nov; 83(11):1216-22. PubMed ID: 1483935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells.
    Yokota S; Kitahara M; Nagata K
    Cancer Res; 2000 Jun; 60(11):2942-8. PubMed ID: 10850441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in thermotolerance induced by heat or sodium arsenite: correlation between redistribution of a 26-kDa protein and development of protein synthesis-independent thermotolerance in CHO cells.
    Lee YJ; Kim DH; Hou ZZ; Corry PM
    Radiat Res; 1991 Sep; 127(3):325-34. PubMed ID: 1886989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermotolerance induced by heat, sodium arsenite, or puromycin: its inhibition and differences between 43 degrees C and 45 degrees C.
    Lee YJ; Dewey WC
    J Cell Physiol; 1988 Jun; 135(3):397-406. PubMed ID: 3294234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in thermotolerance induced by heat or sodium arsenite: cell killing and inhibition of protein synthesis.
    Lee YJ; Perlaky L; Dewey WC; Armour EP; Corry PM
    Radiat Res; 1990 Mar; 121(3):295-303. PubMed ID: 2179980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible role of localized protein denaturation in the mechanism of induction of thermotolerance by heat, sodium-arsenite and ethanol.
    Burgman PW; Kampinga HH; Konings AW
    Int J Hyperthermia; 1993; 9(1):151-62. PubMed ID: 8381841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced glycosyltransferase activity during thermotolerance development in mammalian cells.
    Henle KJ; Monson TP; Stone A
    J Cell Physiol; 1990 Feb; 142(2):372-8. PubMed ID: 2105965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of heat-shock proteins in the induction of thermotolerance in Chinese hamster V79 cells by heat and chemical agents.
    Hatayama T; Kano E; Taniguchi Y; Nitta K; Wakatsuki T; Kitamura T; Imahara H
    Int J Hyperthermia; 1991; 7(1):61-74. PubMed ID: 2051077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition of thermotolerance induced by heat and arsenite in HeLa S3 cells: multiple pathways to induce tolerance?
    Kampinga HH; Brunsting JF; Konings AW
    J Cell Physiol; 1992 Feb; 150(2):406-15. PubMed ID: 1370842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for two states of thermotolerance in mammalian cells.
    Laszlo A
    Int J Hyperthermia; 1988; 4(5):513-26. PubMed ID: 3392425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock response by cells treated with azetidine-2-carboxylic acid.
    Van Rijn J; Wiegant FA; Van den Berg J; Van Wijk R
    Int J Hyperthermia; 2000; 16(4):305-18. PubMed ID: 10949127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between hyperthermia-induced heat-shock proteins and thermotolerance in Morris hepatoma cells.
    Landry J; Chrétien P
    Can J Biochem Cell Biol; 1983 Jun; 61(6):428-37. PubMed ID: 6883172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of thermotolerance in hsp70 induction-defective mutant of NRK cells.
    Sakakibara Y; Shimada Y; Masuda A; Ohtsuka K
    Int J Hyperthermia; 1992; 8(3):329-40. PubMed ID: 1607738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quercetin sensitizes cells in a tumour-like low pH environment to hyperthermia.
    Wachsberger PR; Burd R; Bhala A; Bobyock SB; Wahl ML; Owen CS; Rifat SB; Leeper DB
    Int J Hyperthermia; 2003; 19(5):507-19. PubMed ID: 12944166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hyperthermic temperatures and the synthesis of heat-shock proteins on the lateral diffusion of H-2Kk.
    Mehdi SQ; Hahn GM
    Int J Hyperthermia; 1990; 6(3):553-61. PubMed ID: 2376668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on quercetin-induced suppression of heat shock gene expression and thermotolerance development in HT-29 cells.
    Lee YJ; Curetty L; Hou ZZ; Kim SH; Kim JH; Corry PM
    Biochem Biophys Res Commun; 1992 Jul; 186(2):1121-8. PubMed ID: 1497645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of HSP-28 and three HSP-70 genes during the development and decay of thermotolerance in leukemic and nonleukemic human tumors.
    Mivechi NF; Monson JM; Hahn GM
    Cancer Res; 1991 Dec; 51(24):6608-14. PubMed ID: 1742734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitization of human Ewing's tumor cells to chemotherapy and heat treatment by the bioflavonoid quercetin.
    Debes A; Oerding M; Willers R; Göbel U; Wessalowski R
    Anticancer Res; 2003; 23(4):3359-66. PubMed ID: 12926076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of acute thermotolerance in L929 cells: lack of HSP28 synthesis and phosphorylation.
    Lee YJ; Hou ZZ; Curetty L; Borrelli MJ
    J Cell Physiol; 1992 Jul; 152(1):118-25. PubMed ID: 1618914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.