BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 1483935)

  • 41. Intracellular distribution of 73,000 and 72,000 dalton heat shock proteins in HeLa cells.
    Ohtsuka K; Nakamura H; Sato C
    Int J Hyperthermia; 1986; 2(3):267-75. PubMed ID: 3098874
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flavonoids inhibit the expression of heat shock proteins.
    Hosokawa N; Hirayoshi K; Nakai A; Hosokawa Y; Marui N; Yoshida M; Sakai T; Nishino H; Aoike A; Kawai K
    Cell Struct Funct; 1990 Dec; 15(6):393-401. PubMed ID: 2085852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationship between thermal tolerance and protein degradation in temperature-sensitive mouse cells.
    Li JJ; Dewey WC
    J Cell Physiol; 1992 May; 151(2):310-7. PubMed ID: 1572905
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of cycloheximide on thermotolerance expression, heat shock protein synthesis, and heat shock protein mRNA accumulation in rat fibroblasts.
    Widelitz RB; Magun BE; Gerner EW
    Mol Cell Biol; 1986 Apr; 6(4):1088-94. PubMed ID: 3785158
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stress-induced thermotolerance of the cytoskeleton of mouse neuroblastoma N2A cells and rat Reuber H35 hepatoma cells.
    Wiegant FA; van Bergen en Henegouwen PM; van Dongen G; Linnemans WA
    Cancer Res; 1987 Mar; 47(6):1674-80. PubMed ID: 3815363
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells.
    Hansen RK; Oesterreich S; Lemieux P; Sarge KD; Fuqua SA
    Biochem Biophys Res Commun; 1997 Oct; 239(3):851-6. PubMed ID: 9367858
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cepharanthin enhances thermosensitivity without a resultant reduction in the thermotolerance of a murine mammary carcinoma.
    Yamamoto M; Kuroda M; Honda O; Ono E; Asaumi JI; Shibuya K; Kawasaki S; Joja I; Takemoto M; Kanazawa S; Hiraki Y
    Int J Oncol; 1999 Jul; 15(1):95-9. PubMed ID: 10375599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of staurosporine on suppression of heat shock gene expression and thermotolerance development in HT-29 cells.
    Kim SH; Kim JH; Erdos G; Lee YJ
    Biochem Biophys Res Commun; 1993 Jun; 193(2):759-63. PubMed ID: 8512574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heat shock gene expression in Xenopus laevis A6 cells in response to heat shock and sodium arsenite treatments.
    Darasch S; Mosser DD; Bols NC; Heikkila JJ
    Biochem Cell Biol; 1988 Aug; 66(8):862-70. PubMed ID: 3196465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Induction of HSP27 phosphorylation and thermoresistance in Chinese hamster cells by arsenite, cycloheximide, A23187, and EGTA.
    CrĂȘte P; Landry J
    Radiat Res; 1990 Mar; 121(3):320-7. PubMed ID: 2107559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cytoskeletal thermotolerance in NRK cells.
    Ohtsuka K; Liu YC; Kaneda T
    Int J Hyperthermia; 1993; 9(1):115-24. PubMed ID: 8433021
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermotolerance and radiation sensitizing effects of long duration, mild temperature hyperthermia.
    Armour E; Wang Z; Corry P; Martinez A
    Int J Hyperthermia; 1994; 10(3):315-24. PubMed ID: 7930797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The thermoresistant state: protection from initial damage or better repair?
    Laszlo A
    Exp Cell Res; 1992 Oct; 202(2):519-31. PubMed ID: 1383016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in the localization of heat shock protein 72 correlated with development of thermotolerance in human esophageal cancer cell line.
    Nonaka T; Akimoto T; Mitsuhashi N; Tamaki Y; Yokota S; Nakano T
    Anticancer Res; 2003; 23(6C):4677-87. PubMed ID: 14981913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (MDR1) expression caused by arsenite.
    Kioka N; Hosokawa N; Komano T; Hirayoshi K; Nagata K; Ueda K
    FEBS Lett; 1992 Apr; 301(3):307-9. PubMed ID: 1349537
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Abnormal proteins as the trigger for the induction of stress responses: heat, diamide, and sodium arsenite.
    Lee KJ; Hahn GM
    J Cell Physiol; 1988 Sep; 136(3):411-20. PubMed ID: 3170639
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heat and sodium arsenite act synergistically on the induction of heat shock gene expression in Xenopus laevis A6 cells.
    Heikkila JJ; Darasch SP; Mosser DD; Bols NC
    Biochem Cell Biol; 1987 Apr; 65(4):310-6. PubMed ID: 3606855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induction of thermotolerance and heat-shock protein synthesis during nutritional deprivation.
    van Rijn J; van den Berg J; van Aken H; van Wijk R
    Int J Hyperthermia; 1992; 8(3):377-94. PubMed ID: 1607742
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heat-shock protein 40, a novel predictor of thermotolerance in murine cells.
    Kaneko R; Hattori H; Hayashi Y; Tohnai I; Ueda M; Ohtsuka K
    Radiat Res; 1995 Apr; 142(1):91-7. PubMed ID: 7899564
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlation between redistribution of a 26 kDa protein and development of chronic thermotolerance in various mammalian cell lines.
    Lee YJ; Hou ZZ; Curetty L; Borrelli MJ; Corry PM
    J Cell Physiol; 1990 Nov; 145(2):324-32. PubMed ID: 2246331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.