BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1484119)

  • 1. Distinctive pattern of organisation in the retinofugal pathway of a marsupial: II. Optic chiasm.
    Jeffery G; Harman AM
    J Comp Neurol; 1992 Nov; 325(1):57-67. PubMed ID: 1484119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinctive pattern of organisation in the retinofugal pathway of a marsupial: I. Retina and optic nerve.
    Harman AM; Jeffery G
    J Comp Neurol; 1992 Nov; 325(1):47-56. PubMed ID: 1484118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the chiasm of a marsupial, the quokka wallaby.
    Harman AM; Jeffery G
    J Comp Neurol; 1995 Aug; 359(3):507-21. PubMed ID: 7499544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiasm formation in man is fundamentally different from that in the mouse.
    Neveu MM; Jeffery G
    Eye (Lond); 2007 Oct; 21(10):1264-70. PubMed ID: 17914429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual abnormalities in albino wallabies: a brief note.
    Guillery RW; Jeffery G; Saunders N
    J Comp Neurol; 1999 Jan; 403(1):33-8. PubMed ID: 10075441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early development of the optic chiasm in the gray short-tailed opossum, Monodelphis domestica.
    Taylor JS; Guillery RW
    J Comp Neurol; 1994 Dec; 350(1):109-21. PubMed ID: 7860795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early midline interactions are important in mouse optic chiasm formation but are not critical in man: a significant distinction between man and mouse.
    Neveu MM; Holder GE; Ragge NK; Sloper JJ; Collin JR; Jeffery G
    Eur J Neurosci; 2006 Jun; 23(11):3034-42. PubMed ID: 16819992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of eutherian and marsupial optic chiasms: a brief review.
    Guillery RW
    Rev Bras Biol; 1995 Dec; 55 Suppl 1():1-10. PubMed ID: 8729269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE; Reese BE
    J Comp Neurol; 1993 Apr; 330(1):95-104. PubMed ID: 8468406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in fiber order in the optic nerve and tract of rat embryos.
    Chan SO; Guillery RW
    J Comp Neurol; 1994 Jun; 344(1):20-32. PubMed ID: 8063954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a very early monocular enucleation upon the development of the uncrossed retinofugal pathway in ferrets.
    Taylor JS; Guillery RW
    J Comp Neurol; 1995 Jun; 357(2):331-40. PubMed ID: 7665732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity in mammalian chiasmatic architecture: ipsilateral axons are deflected at glial arches in the prechiasmatic optic nerve of the eutherian Tupaia belangeri.
    Knabe W; Washausen S; Happel N; Kuhn HJ
    J Comp Neurol; 2008 May; 508(3):437-57. PubMed ID: 18335540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First evidence of diversity in eutherian chiasmatic architecture: tree shrews, like marsupials, have spatially segregated crossed and uncrossed chiasmatic pathways.
    Jeffery G; Harman A; Flügge G
    J Comp Neurol; 1998 Jan; 390(2):183-93. PubMed ID: 9453663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinogeniculate projection fibers in the monkey optic chiasm: a demonstration of the fiber arrangement by means of wheat germ agglutinin conjugated to horseradish peroxidase.
    Naito J
    J Comp Neurol; 1994 Aug; 346(4):559-71. PubMed ID: 7527062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of uncrossed axons along the course of the optic nerve and chiasm of rodents.
    Baker GE; Jeffery G
    J Comp Neurol; 1989 Nov; 289(3):455-61. PubMed ID: 2808779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibre organization of the monkey's optic tract: II. Noncongruent representation of the two half-retinae.
    Reese BE; Cowey A
    J Comp Neurol; 1990 May; 295(3):401-12. PubMed ID: 2351759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Position of axons in the cat's optic tract in relation to their retinal origin and chiasmatic pathway.
    Reese BE; Guillery RW; Marzi CA; Tassinari G
    J Comp Neurol; 1991 Apr; 306(4):539-53. PubMed ID: 1712793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segregated hemispheric pathways through the optic chiasm distinguish primates from rodents.
    Jeffery G; Levitt JB; Cooper HM
    Neuroscience; 2008 Dec; 157(3):637-43. PubMed ID: 18854206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct retinal projections to the hypothalamus, piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique.
    Pickard GE; Silverman AJ
    J Comp Neurol; 1981 Feb; 196(1):155-72. PubMed ID: 7204664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of retinal axons within the optic nerve, optic chiasm, and the innervation of multiple central nervous system targets Rana pipiens.
    Montgomery NM; Tyler C; Fite KV
    J Comp Neurol; 1998 Dec; 402(2):222-37. PubMed ID: 9845245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.