These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 1484356)

  • 1. Ca(2+)-dependent and -independent components of transmitter release at the frog neuromuscular junction.
    Tanabe N; Kijima H
    J Physiol; 1992 Sep; 455():271-89. PubMed ID: 1484356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Both augmentation and potentiation occur independently of internal Ca2+ at the frog neuromuscular junction.
    Tanabe N; Kijima H
    Neurosci Lett; 1989 Apr; 99(1-2):147-52. PubMed ID: 2501716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca-independent augmentation of endplate potential during repetitive stimulation.
    Maeno T; Hara N
    Acta Physiol Pharmacol Latinoam; 1989; 39(4):375-82. PubMed ID: 2562456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-independent increase of transmitter release at frog end-plate by trinitrobenzene sulphonic acid.
    Kijima H; Tanabe N
    J Physiol; 1988 Sep; 403():135-49. PubMed ID: 3150982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmitter release at frog end-plate loaded with a Ca2+-chelator, BAPTA: hypertonicity and erythrosin B augment the release independently of internal Ca2+.
    Tanabe N; Kijima H
    Neurosci Lett; 1988 Sep; 92(1):52-7. PubMed ID: 2847089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals.
    Urbano FJ; Depetris RS; Uchitel OD
    Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplicative and additive Ca(2+)-dependent components of facilitation at mouse endplates.
    Bain AI; Quastel DM
    J Physiol; 1992 Sep; 455():383-405. PubMed ID: 1484358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic effects of a trinitrobenzene analogue at the frog neuromuscular junction.
    Osanai M; Tsuji A; Suzuki N; Kijima H
    J Neurophysiol; 1996 Sep; 76(3):1735-43. PubMed ID: 8890288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitation and delayed release at about 0 degree C at the frog neuromuscular junction: effects of calcium chelators, calcium transport inhibitors, and okadaic acid.
    Van der Kloot W; Molgó J
    J Neurophysiol; 1993 Mar; 69(3):717-29. PubMed ID: 8385191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Mg2+ on the stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Tanabe N; Morota A; Kijima H
    Zoolog Sci; 1995 Jun; 12(3):265-70. PubMed ID: 7580810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics.
    Rozov A; Burnashev N; Sakmann B; Neher E
    J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraterminal Ca(2+) and spontaneous transmitter release at the frog neuromuscular junction.
    Angleson JK; Betz WJ
    J Neurophysiol; 2001 Jan; 85(1):287-94. PubMed ID: 11152728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of Ba2+, Sr2+, and Ca2+ on stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1980 Aug; 76(2):175-211. PubMed ID: 6967950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB; Delaney KR; Tank DW
    J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between Calcium Chelators and the Activity of P2X7 Receptors in Mouse Motor Synapses.
    Miteva A; Gaydukov A; Balezina O
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32188153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantal transmitter release mediated by strontium at the mouse motor nerve terminal.
    Bain AI; Quastel DM
    J Physiol; 1992 May; 450():63-87. PubMed ID: 1359125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse.
    Castonguay A; Robitaille R
    J Neurosci; 2001 Mar; 21(6):1911-22. PubMed ID: 11245676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ dynamics at the frog motor nerve terminal.
    Suzuki S; Osanai M; Murase M; Suzuki N; Ito K; Shirasaki T; Narita K; Ohnuma K; Kuba K; Kijima H
    Pflugers Arch; 2000 Jul; 440(3):351-65. PubMed ID: 10954322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD; Pawson PA
    J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.