These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 1484483)

  • 1. How bacterial protein toxins enter cells; the role of partial unfolding in membrane translocation.
    London E
    Mol Microbiol; 1992 Nov; 6(22):3277-82. PubMed ID: 1484483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into membrane protein folding and translocation from the behavior of bacterial toxins: models for membrane translocation.
    London E; Ulbrandt ND; Tortorella D; Jiang JX; Abrams FS
    Soc Gen Physiol Ser; 1993; 48():45-61. PubMed ID: 8503054
    [No Abstract]   [Full Text] [Related]  

  • 3. Membrane traffic and the cellular uptake of cholera toxin.
    Lencer WI; Hirst TR; Holmes RK
    Biochim Biophys Acta; 1999 Jul; 1450(3):177-90. PubMed ID: 10395933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural biology and structure-based inhibitor design of cholera toxin and heat-labile enterotoxin.
    Fan E; O'Neal CJ; Mitchell DD; Robien MA; Zhang Z; Pickens JC; Tan XJ; Korotkov K; Roach C; Krumm B; Verlinde CL; Merritt EA; Hol WG
    Int J Med Microbiol; 2004 Oct; 294(4):217-23. PubMed ID: 15532979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane receptors for bacterial toxins.
    Eidels L; Proia RL; Hart DA
    Microbiol Rev; 1983 Dec; 47(4):596-620. PubMed ID: 6363900
    [No Abstract]   [Full Text] [Related]  

  • 6. Orientation of cholera toxin bound to model membranes.
    Cabral-Lilly D; Sosinsky GE; Reed RA; McDermott MR; Shipley GG
    Biophys J; 1994 Apr; 66(4):935-41. PubMed ID: 8038397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AB5 ADP-ribosylating toxins: comparative anatomy and physiology.
    Burnette WN
    Structure; 1994 Mar; 2(3):151-8. PubMed ID: 8069630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gangliosides as receptors for bacterial enterotoxins.
    Fishman PH; Pacuszka T; Orlandi PA
    Adv Lipid Res; 1993; 25():165-87. PubMed ID: 8396312
    [No Abstract]   [Full Text] [Related]  

  • 9. Exploration of the GM1 receptor-binding site of heat-labile enterotoxin and cholera toxin by phenyl-ring-containing galactose derivatives.
    Fan E; Merritt EA; Zhang Z; Pickens JC; Roach C; Ahn M; Hol WG
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):201-12. PubMed ID: 11173465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactose-binding site in Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT).
    Merritt EA; Sixma TK; Kalk KH; van Zanten BA; Hol WG
    Mol Microbiol; 1994 Aug; 13(4):745-53. PubMed ID: 7997185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for differential receptor binding of cholera and Escherichia coli heat-labile toxins: influence of heterologous amino acid substitutions in the cholera B-subunit.
    Bäckström M; Shahabi V; Johansson S; Teneberg S; Kjellberg A; Miller-Podraza H; Holmgren J; Lebens M
    Mol Microbiol; 1997 May; 24(3):489-97. PubMed ID: 9179843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular transport and processing of protein toxins produced by enteric bacteria.
    Sandvig K; Garred O; van Deurs B
    Adv Exp Med Biol; 1997; 412():225-32. PubMed ID: 9192018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin.
    Sixma TK; Kalk KH; van Zanten BA; Dauter Z; Kingma J; Witholt B; Hol WG
    J Mol Biol; 1993 Apr; 230(3):890-918. PubMed ID: 8478941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review).
    De Haan L; Hirst TR
    Mol Membr Biol; 2004; 21(2):77-92. PubMed ID: 15204437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enterotoxins. The ring on a finger.
    van Heyningen S
    Nature; 1991 May; 351(6325):351. PubMed ID: 2034284
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural foundation for the design of receptor antagonists targeting Escherichia coli heat-labile enterotoxin.
    Merritt EA; Sarfaty S; Feil IK; Hol WG
    Structure; 1997 Nov; 5(11):1485-99. PubMed ID: 9384564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholera toxin and Escherichia coli enterotoxin B-subunits inhibit macrophage-mediated antigen processing and presentation: evidence for antigen persistence in non-acidic recycling endosomal compartments.
    Millar DG; Hirst TR
    Cell Microbiol; 2001 May; 3(5):311-29. PubMed ID: 11298654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anchor-based design of improved cholera toxin and E. coli heat-labile enterotoxin receptor binding antagonists that display multiple binding modes.
    Pickens JC; Merritt EA; Ahn M; Verlinde CL; Hol WG; Fan E
    Chem Biol; 2002 Feb; 9(2):215-24. PubMed ID: 11880036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected carbohydrate cross-binding by Escherichia coli heat-labile enterotoxin. Recognition of human and rabbit target cell glycoconjugates in comparison with cholera toxin.
    Karlsson KA; Teneberg S; Angström J; Kjellberg A; Hirst TR; Berström J; Miller-Podraza H
    Bioorg Med Chem; 1996 Nov; 4(11):1919-28. PubMed ID: 9007276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caco-2/HT29-MTX co-cultured cells as a model for studying physiological properties and toxin-induced effects on intestinal cells.
    Hoffmann P; Burmester M; Langeheine M; Brehm R; Empl MT; Seeger B; Breves G
    PLoS One; 2021; 16(10):e0257824. PubMed ID: 34618824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.