These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 1484496)

  • 1. Proposed nomenclature for the genes involved in molybdenum metabolism in Escherichia coli and Salmonella typhimurium.
    Shanmugam KT; Stewart V; Gunsalus RP; Boxer DH; Cole JA; Chippaux M; DeMoss JA; Giordano G; Lin EC; Rajagopalan KV
    Mol Microbiol; 1992 Nov; 6(22):3452-4. PubMed ID: 1484496
    [No Abstract]   [Full Text] [Related]  

  • 2. The pterin molybdenum cofactors.
    Rajagopalan KV; Johnson JL
    J Biol Chem; 1992 May; 267(15):10199-202. PubMed ID: 1587808
    [No Abstract]   [Full Text] [Related]  

  • 3. Cloning of a eukaryotic molybdenum cofactor gene.
    Kamdar P; Shelton ME; Finnerty V
    Adv Exp Med Biol; 1993; 338():383-6. PubMed ID: 8304143
    [No Abstract]   [Full Text] [Related]  

  • 4. Molybdenum cofactor biosynthesis in Escherichia coli mod and mog mutants.
    Joshi MS; Johnson JL; Rajagopalan KV
    J Bacteriol; 1996 Jul; 178(14):4310-2. PubMed ID: 8763964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenesis of molybdenum cofactors.
    Hinton SM; Dean D
    Crit Rev Microbiol; 1990; 17(3):169-88. PubMed ID: 2405878
    [No Abstract]   [Full Text] [Related]  

  • 6. Biosynthesis and processing of the molybdenum cofactors.
    Rajagopalan KV
    Biochem Soc Trans; 1997 Aug; 25(3):757-61. PubMed ID: 9388540
    [No Abstract]   [Full Text] [Related]  

  • 7. Hypersensitivity of Escherichia coli Delta(uvrB-bio) mutants to 6-hydroxylaminopurine and other base analogs is due to a defect in molybdenum cofactor biosynthesis.
    Kozmin SG; Pavlov YI; Dunn RL; Schaaper RM
    J Bacteriol; 2000 Jun; 182(12):3361-7. PubMed ID: 10852865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria.
    Zupok A; Iobbi-Nivol C; Méjean V; Leimkühler S
    Metallomics; 2019 Oct; 11(10):1602-1624. PubMed ID: 31517366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdopterin biosynthesis in man. Properties of the converting factor in liver tissue from a molybdenum cofactor deficient patient.
    Johnson JL; Rajagopalan KV
    Adv Exp Med Biol; 1993; 338():379-82. PubMed ID: 8304142
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli.
    Sandu C; Brandsch R
    Arch Microbiol; 2002 Dec; 178(6):465-70. PubMed ID: 12420167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function.
    Kozmin SG; Schaaper RM
    Mutat Res; 2007 Jun; 619(1-2):9-15. PubMed ID: 17349664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, expression and sequencing the molybdenum-pterin binding protein (mop) gene of Clostridium pasteurianum in Escherichia coli.
    Hinton SM; Freyer G
    Nucleic Acids Res; 1986 Dec; 14(23):9371-80. PubMed ID: 3540853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the chlA locus of Escherichia coli K12: involvement of molybdenum cofactor.
    Baker KP; Boxer DH
    Mol Microbiol; 1991 Apr; 5(4):901-7. PubMed ID: 1906967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New unified nomenclature for the flagellar genes of Escherichia coli and Salmonella typhimurium.
    Iino T; Komeda Y; Kutsukake K; Macnab RM; Matsumura P; Parkinson JS; Simon MI; Yamaguchi S
    Microbiol Rev; 1988 Dec; 52(4):533-5. PubMed ID: 3070322
    [No Abstract]   [Full Text] [Related]  

  • 15. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci.
    Stewart V; MacGregor CH
    J Bacteriol; 1982 Aug; 151(2):788-99. PubMed ID: 7047497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdopterin from molybdenum and tungsten enzymes.
    Schindelin H; Kisker C; Rajagopalan KV
    Adv Protein Chem; 2001; 58():47-94. PubMed ID: 11665493
    [No Abstract]   [Full Text] [Related]  

  • 17. NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli.
    Blasco F; Dos Santos JP; Magalon A; Frixon C; Guigliarelli B; Santini CL; Giordano G
    Mol Microbiol; 1998 May; 28(3):435-47. PubMed ID: 9632249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation.
    Genest O; Seduk F; Théraulaz L; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2006 Dec; 265(1):51-5. PubMed ID: 17107419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molybdenum in nitrogenase.
    Shah VK; Ugalde RA; Imperial J; Brill WJ
    Annu Rev Biochem; 1984; 53():231-57. PubMed ID: 6383195
    [No Abstract]   [Full Text] [Related]  

  • 20. Formation of thieno[3,2-g]pterines from the molybdenum cofactor.
    Ishizuka M; Ushio K; Toraya T; Fukui S
    Biochem Biophys Res Commun; 1983 Mar; 111(2):537-43. PubMed ID: 6340673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.