These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14847504)

  • 1. [Research on the microfauna of the moving sands of Marchfeld in 1942-1943].
    JAHN E
    Annee Biol; 1951 Apr; 55(4):253-4. PubMed ID: 14847504
    [No Abstract]   [Full Text] [Related]  

  • 2. Blending foundry sands with soil: Effect on dehydrogenase activity.
    Dungan RS; Kukier U; Lee B
    Sci Total Environ; 2006 Mar; 357(1-3):221-30. PubMed ID: 15975632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beach sands along the California coast are diffuse sources of fecal bacteria to coastal waters.
    Yamahara KM; Layton BA; Santoro AE; Boehm AB
    Environ Sci Technol; 2007 Jul; 41(13):4515-21. PubMed ID: 17695890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Adsorption of aqueous oil on sands and its studies of effective factors].
    Wu JW; Zheng XL; Li LL; Sun J
    Huan Jing Ke Xue; 2006 Oct; 27(10):2019-23. PubMed ID: 17256602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effects of ferrihydrite coating and ionic type on the transport of compost-derived dissolved organic matter in saturated porous media.
    Miao C; Zhou H; Lv Y; Shang J; Mamut A
    Environ Pollut; 2022 Aug; 307():119501. PubMed ID: 35636713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Environmental toxicity of waste foundry sand].
    Zhang HF; Wang YJ; Wang JL; Huang TY; Xiong Y
    Huan Jing Ke Xue; 2013 Mar; 34(3):1174-80. PubMed ID: 23745431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of manufacturing ultra-high performance cement-based composites (UHPCCs) with recycled sand: A preliminary study.
    Jiang J; Zhou W; Gao Y; Wang L; Wang F; Chu HY; Xu G; Vandevyvere B; Sierens Z; Li J
    Waste Manag; 2019 Jan; 83():104-112. PubMed ID: 30514456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-based measurements of permeability in pebbly sands.
    Conrad CM; Ritzi RW; Dominic DF
    Ground Water; 2008; 46(1):103-12. PubMed ID: 18181869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of virus attenuation mechanisms in a fluvioglacial sand using column experiments.
    Flynn RM; Rossi P; Hunkeler D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):83-95. PubMed ID: 19712386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of radiological hazards of Lawrencepur sand, Pakistan using gamma spectrometry.
    Qureshi AA; Ali M; Waheed A; Manzoor S; Siddique RU; Ahmed Khan H
    Radiat Prot Dosimetry; 2013 Nov; 157(1):73-84. PubMed ID: 23630384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between sand and water quality at recreational beaches.
    Phillips MC; Solo-Gabriele HM; Piggot AM; Klaus JS; Zhang Y
    Water Res; 2011 Dec; 45(20):6763-9. PubMed ID: 22071324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sand and sandbar willow: a feedback loop amplifies environmental sensitivity at the riparian interface.
    Rood SB; Goater LA; Gill KM; Braatne JH
    Oecologia; 2011 Jan; 165(1):31-40. PubMed ID: 20803218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sand resistance of sunscreens.
    Caswell M; Wood C; Martinez A
    J Cosmet Sci; 2012; 63(4):255-8. PubMed ID: 23193889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical characterization of monazite sand and its associated bacterial species from the beaches of southeastern Brazil.
    D'Azeredo Orlando MT; Galvão ES; Passamai JL; Zordan AB; Orlando CGP; Oliveira JP; Gouvea SA; Ribeiro FND; Dos Santos Alves TPD; Soares J
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11815-11830. PubMed ID: 34550521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of standardized procedures to evaluate metal leaching from waste foundry sands.
    Miguel RE; Ippolito JA; Porta AA; Banda Noriega RB; Dungan RS
    J Environ Qual; 2013; 42(2):615-20. PubMed ID: 23673854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds.
    Arias CA; Del Bubba M; Brix H
    Water Res; 2001 Apr; 35(5):1159-68. PubMed ID: 11268836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waste green sands as reactive media for the removal of zinc from water.
    Lee T; Park JW; Lee JH
    Chemosphere; 2004 Aug; 56(6):571-81. PubMed ID: 15212900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waste green sands as reactive media for groundwater contaminated with trichloroethylene (TCE).
    Lee T; Benson CH; Eykholt GR
    J Hazard Mater; 2004 Jun; 109(1-3):25-36. PubMed ID: 15177742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm.
    Del Bubba M; Arias CA; Brix H
    Water Res; 2003 Aug; 37(14):3390-400. PubMed ID: 12834732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shotgun metagenomic sequencing reveals freshwater beach sands as reservoir of bacterial pathogens.
    Mohiuddin MM; Salama Y; Schellhorn HE; Golding GB
    Water Res; 2017 May; 115():360-369. PubMed ID: 28340372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.