These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14847504)

  • 21. On the nature of Athabasca Oil Sands.
    Czarnecki J; Radoev B; Schramm LL; Slavchev R
    Adv Colloid Interface Sci; 2005 Jun; 114-115():53-60. PubMed ID: 15936283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Air and water entrapment in the vicinity of the water table.
    Dunn AM; Silliman SE
    Ground Water; 2003; 41(6):729-34. PubMed ID: 14649856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Method repeatability for measuring Enterococcus in southern California beach sands.
    Cao Y; McGee CD; Griffith JF; Weisberg SB
    Lett Appl Microbiol; 2011 Dec; 53(6):656-9. PubMed ID: 21967472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of carboxymethyl cellulose for the transport of titanium dioxide nanoparticles in clean silica and mineral-coated sands.
    Joo SH; Al-Abed SR; Luxton T
    Environ Sci Technol; 2009 Jul; 43(13):4954-9. PubMed ID: 19673291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia.
    Khandaker MU; Asaduzzaman K; Sulaiman AFB; Bradley DA; Isinkaye MO
    Mar Pollut Bull; 2018 Feb; 127():654-663. PubMed ID: 29475708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virus' (MS2, phiX174, and Aichi) attachment on sand measured by atomic force microscopy and their transport through sand columns.
    Attinti R; Wei J; Kniel K; Sims JT; Jin Y
    Environ Sci Technol; 2010 Apr; 44(7):2426-32. PubMed ID: 20205469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Escherichia coli and phosphate on the transport of titanium dioxide nanoparticles in heterogeneous porous media.
    Xu N; Cheng X; Wang D; Xu X; Huangfu X; Li Z
    Water Res; 2018 Dec; 146():264-274. PubMed ID: 30278381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elevated radionuclide concentrations in heavy mineral-rich beach sands in the Cox's Bazar region, Bangladesh and related possible radiological effects.
    Zaman M; Schubert M; Antao S
    Isotopes Environ Health Stud; 2012; 48(4):512-25. PubMed ID: 22724386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogenic and anthropogenic organic components of Saharan sands.
    Balducci C; Ladji R; Muto V; Romagnoli P; Yassaa N; Cecinato A
    Chemosphere; 2014 Jul; 107():129-135. PubMed ID: 24875880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-dimensional solute transport in stratified sands at short travel distances.
    Al-Tabbaa A; Ayotamuno JM; Martin RJ
    J Hazard Mater; 2000 Mar; 73(1):1-15. PubMed ID: 10686375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries.
    Miguel RE; Ippolito JA; Leytem AB; Porta AA; Banda Noriega RB; Dungan RS
    J Environ Manage; 2012 Nov; 110():77-81. PubMed ID: 22738693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of stable isotopes ((13)C/(12)C and (15)N/(14)N) to trace exposure to oil sands processed material in the Alberta oil sands region.
    Farwell AJ; Nero V; Ganshorn K; Leonhardt C; Ciborowski J; MacKinnon M; Dixon DG
    J Toxicol Environ Health A; 2009; 72(6):385-96. PubMed ID: 19199145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remediation efficiency of different methods for rapid-response of microbiological and/or organic matter contaminated beach sand: A laboratory study.
    Testolin RC; Lima AOS; Strutz JM; Corrêa R; Poyer-Radetski G; Cesconetto L; Felde A; Radetski CM
    Mar Pollut Bull; 2019 Apr; 141():84-90. PubMed ID: 30955784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of slow sand filtration for disinfection of secondary clarifier effluent.
    Langenbach K; Kuschk P; Horn H; Kästner M
    Water Res; 2010 Jan; 44(1):159-66. PubMed ID: 19833374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Foundry sands as low-cost adsorbent material for Cr (VI) removal.
    Campos I; Alvarez JA; Villar P; Pascual A; Herrero L
    Environ Technol; 2013; 34(9-12):1267-81. PubMed ID: 24191460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea.
    Schöttner S; Pfitzner B; Grünke S; Rasheed M; Wild C; Ramette A
    Environ Microbiol; 2011 Jul; 13(7):1815-26. PubMed ID: 21554515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The regeneration of waste foundry sand and residue stabilization using coal refuse.
    Park CL; Kim BG; Yu Y
    J Hazard Mater; 2012 Feb; 203-204():176-82. PubMed ID: 22197564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of oil and gas well-drilling fluids on the biomass and community structure of microbiota that colonize sands in running seawater.
    Smith GA; Nickels JS; Bobbie RJ; Richards NL; White DC
    Arch Environ Contam Toxicol; 1982; 11(1):17-23. PubMed ID: 7073315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geochemical Characteristics and Environmental Implications of Surface Sediments from Different Types of Sand Dunes in the Dinggye Area, Southern Tibet.
    Pan M; Chen Y; Hao Z; Li C; Zhao H; Wang J; Gong Y
    Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remediation of oil-contaminated sand by coal agglomeration using ball milling.
    Shin YJ; Shen YH
    Environ Technol; 2011 Oct; 32(13-14):1551-8. PubMed ID: 22329146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.