These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1484856)

  • 21. Responses of the circadian locomotor activity rhythm of Mus booduga to shifts in LD schedules.
    Geetha L; Chandrashekaran MK; Subbaraj R
    Chronobiol Int; 1996 Jul; 13(2):103-12. PubMed ID: 8877119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of food anticipation in Per2 mutant mice.
    Feillet CA; Ripperger JA; Magnone MC; Dulloo A; Albrecht U; Challet E
    Curr Biol; 2006 Oct; 16(20):2016-22. PubMed ID: 17055980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity.
    Krieger DT; Hauser H; Krey LC
    Science; 1977 Jul; 197(4301):398-9. PubMed ID: 877566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction.
    Mendoza J; Drevet K; Pévet P; Challet E
    J Neuroendocrinol; 2008 Feb; 20(2):251-60. PubMed ID: 18088363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Olfactory stimulation enhances light-induced phase shifts in free-running activity rhythms and Fos expression in the suprachiasmatic nucleus.
    Amir S; Cain S; Sullivan J; Robinson B; Stewart J
    Neuroscience; 1999; 92(4):1165-70. PubMed ID: 10426475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction between light- and feeding-entrainable circadian rhythms in the rat.
    Stephan FK
    Physiol Behav; 1986; 38(1):127-33. PubMed ID: 3786492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple entrained oscillator model of food anticipatory circadian rhythms.
    Petersen CC; Cao F; Stinchcombe AR; Mistlberger RE
    Sci Rep; 2022 Jun; 12(1):9306. PubMed ID: 35661783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circadian feeding entrains anticipatory metabolic activity in piriform cortex and olfactory tubercle, but not in suprachiasmatic nucleus.
    Olivo D; Caba M; Gonzalez-Lima F; Vázquez A; Corona-Morales A
    Brain Res; 2014 Dec; 1592():11-21. PubMed ID: 25281805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase-dependent phase shift of methamphetamine-induced circadian rhythm by haloperidol in SCN-lesioned rats.
    Honma S; Honma K
    Brain Res; 1995 Mar; 674(2):283-90. PubMed ID: 7796108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.
    Dattolo T; Coomans CP; van Diepen HC; Patton DF; Power S; Antle MC; Meijer JH; Mistlberger RE
    Neuroscience; 2016 Feb; 315():91-103. PubMed ID: 26701294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-term effects of neonatal alcohol exposure on photic reentrainment and phase-shifting responses of the activity rhythm in adult rats.
    Allen GC; Farnell YZ; Maeng JU; West JR; Chen WJ; Earnest DJ
    Alcohol; 2005 Oct; 37(2):79-88. PubMed ID: 16584971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopaminergic regulation of circadian food anticipatory activity rhythms in the rat.
    Smit AN; Patton DF; Michalik M; Opiol H; Mistlberger RE
    PLoS One; 2013; 8(11):e82381. PubMed ID: 24312417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice.
    Holmes MM; Mistlberger RE
    Physiol Behav; 2000 Mar; 68(5):655-66. PubMed ID: 10764895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistent meal-associated rhythms in SCN-lesioned rats.
    Clarke JD; Coleman GJ
    Physiol Behav; 1986 Jan; 36(1):105-13. PubMed ID: 3952168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forced dissociation of activity entrained to T cycles of food access in rats with suprachiasmatic lesions.
    Stephan FK
    J Biol Rhythms; 1989; 4(4):467-79. PubMed ID: 2519607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurogenetics of food anticipation.
    Challet E; Mendoza J; Dardente H; Pévet P
    Eur J Neurosci; 2009 Nov; 30(9):1676-87. PubMed ID: 19863658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Entrainment of aged, dysrhythmic rats to a restricted feeding schedule.
    Walcott EC; Tate BA
    Physiol Behav; 1996 Nov; 60(5):1205-8. PubMed ID: 8916172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian food anticipatory activity: Entrainment limits and scalar properties re-examined.
    Petersen CC; Patton DF; Parfyonov M; Mistlberger RE
    Behav Neurosci; 2014 Dec; 128(6):689-702. PubMed ID: 25285457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.