These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1484967)

  • 1. Role of the 5HT2 receptor in the effects of serotonin and ketanserin on proliferation and differentiation of embryonic chick skin.
    Beele H; Thierens H; de Ridder L
    Prog Histochem Cytochem; 1992; 26(1-4):53-60. PubMed ID: 1484967
    [No Abstract]   [Full Text] [Related]  

  • 2. Morphological effects of serotonin and ketanserin on embryonic chick skin in vitro.
    de Ridder L; Beele H
    Experientia; 1988 Jul; 44(7):603-6. PubMed ID: 3396656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-response curve of the effects of serotonin and ketanserin on the functional morphology of skin in vitro.
    Beele H; Thierens H; de Ridder L
    Skin Pharmacol; 1994; 7(4):181-7. PubMed ID: 8024799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of a difference between ketanserin and ritanserin in central vs. peripheral serotonin receptor antagonism.
    Cohen ML; Bloomquist WL; Snoddy HD; Fuller RW
    Life Sci; 1989; 45(13):1185-9. PubMed ID: 2507847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct effects of serotonin, and 5-HT2, alpha 1 and H1 receptor-antagonists on embryonic chick skin in vitro: a morphological and functional study.
    Beele H; Thierens H; de Ridder L
    Cell Biol Int Rep; 1990 Aug; 14(8):737-46. PubMed ID: 1977525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct effects of serotonin and ketanserin on the functional morphology of embryonic chick skin in vitro.
    Beele H; Thierens H; de Ridder L
    In Vitro Cell Dev Biol; 1989 Oct; 25(10):923-33. PubMed ID: 2808224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripherally administered serotonin induces hyperglucagonemia in mice.
    Yamada J; Sugimoto Y; Kimura I; Watanabe Y; Takeuchi N; Horisaka K
    Life Sci; 1993; 52(23):1845-9. PubMed ID: 8502121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role and localization of serotonin-5HT2 receptors.
    Leysen JE; Schotte A
    Prog Histochem Cytochem; 1992; 26(1-4):241-9. PubMed ID: 1484964
    [No Abstract]   [Full Text] [Related]  

  • 9. Antagonism of the relaxant 5-HT receptor in the dog basilar artery by the high-affinity 5-HT7 receptor ligand, LY215840.
    Terrón JA
    Proc West Pharmacol Soc; 1998; 41():129-30. PubMed ID: 9836268
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of synapse density by 5-HT2A receptor agonist and antagonist in the spinal cord of chicken embryo.
    Niitsu Y; Hamada S; Hamaguchi K; Mikuni M; Okado N
    Neurosci Lett; 1995 Aug; 195(3):159-62. PubMed ID: 8584199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of 5-hydroxytryptamine (5-HT) receptor subtypes influencing colonic motility in conscious dogs.
    Nagakura Y; Kamato T; Nishida A; Ito H; Yamano M; Miyata K
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Apr; 353(5):489-98. PubMed ID: 8740141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of serotonin-amplified human platelet aggregation by ketanserin, ritanserin, and the ergoline 5HT2 receptor antagonists-LY53857, sergolexole, and LY237733.
    McBride PA; Mann JJ; Nimchinsky E; Cohen ML
    Life Sci; 1990; 47(23):2089-95. PubMed ID: 2125095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ketanserin and DOI on spontaneous and 5-HT-evoked peristalsis of the pig ureter in vivo.
    Hauser DS; Mevissen M; Weiss R; Portier CJ; Scholtysik G; Studer UE; Danuser H
    Br J Pharmacol; 2002 Feb; 135(4):1026-32. PubMed ID: 11861331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin-mediated striatal dopamine release involves the dopamine uptake site and the serotonin receptor.
    Sershen H; Hashim A; Lajtha A
    Brain Res Bull; 2000 Oct; 53(3):353-7. PubMed ID: 11113592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow wave sleep in humans: role of 5-HT2A and 5-HT2C receptors.
    Sharpley AL; Elliott JM; Attenburrow MJ; Cowen PJ
    Neuropharmacology; 1994; 33(3-4):467-71. PubMed ID: 7984285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the 5-HT2 receptor ligands dimethoxy-4-indophenyl-2-aminopropane and ketanserin in ethanol discriminations.
    Szeliga KT; Grant KA
    Alcohol Clin Exp Res; 1998 May; 22(3):646-51. PubMed ID: 9622445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of rhythmic swimming activity in post-embryonic Xenopus laevis tadpoles by 5-hydroxytryptamine acting at 5HT1a receptors.
    Wedderburn JF; Sillar KT
    Proc Biol Sci; 1994 Jul; 257(1348):59-66. PubMed ID: 8090792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for presynaptic location of inhibitory 5-HT1D beta-like autoreceptors in the guinea-pig brain cortex.
    Bühlen M; Fink K; Böing C; Göthert M
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Feb; 353(3):281-9. PubMed ID: 8692282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formalin-induced nociceptive behavior and edema: involvement of multiple peripheral 5-hydroxytryptamine receptor subtypes.
    Doak GJ; Sawynok J
    Neuroscience; 1997 Oct; 80(3):939-49. PubMed ID: 9276504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Participation of 5-HT1-like and 5-HT2A receptors in the contraction of human temporal artery by 5-hydroxytryptamine and related drugs.
    Verheggen R; Freudenthaler S; Meyer-Dulheuer F; Kaumann AJ
    Br J Pharmacol; 1996 Jan; 117(2):283-92. PubMed ID: 8789380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.