These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14850700)

  • 1. Studies on the mechanism of acetate oxidation by bacteria. V. evidence for the participation of fumarate, malate, and oxalacetate in the oxidation of acetic acid by Escherichia coli.
    AJL SJ
    J Gen Physiol; 1951 Jul; 34(6):785-94. PubMed ID: 14850700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM.
    BENZIMAN M; ABELIOVITZ A
    J Bacteriol; 1964 Feb; 87(2):270-7. PubMed ID: 14151044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Oxidation of Krebs cycle substrates by Eurytrema pancreaticum mitochondria].
    Shestak EA
    Parazitologiia; 1977; 11(5):412-6. PubMed ID: 909726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes.
    Miller TL
    Arch Microbiol; 1978 May; 117(2):145-52. PubMed ID: 678020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MECHANISMS IN THE INHIBITION OF MICROORGANISMS BY SORBIC ACID.
    YORK GK; VAUGHN RH
    J Bacteriol; 1964 Aug; 88(2):411-7. PubMed ID: 14203358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. METABOLIC ACTIVITY IN COXIELLA BURNETII.
    ORMSBEE RA; PEACOCK MG
    J Bacteriol; 1964 Nov; 88(5):1205-10. PubMed ID: 14234772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Uptake of acetate by Acinetobacter calcoaceticus].
    Haferburg D; Kleber HP; Aurich H
    Acta Biol Med Ger; 1977; 36(9):1237-42. PubMed ID: 614747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochromelinked fermentation in Bacteroides ruminicola.
    WHITE DC; BRYANT MP; CALDWELL DR
    J Bacteriol; 1962 Oct; 84(4):822-8. PubMed ID: 14000291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation of fumarate and L-malate by Clostridium formicoaceticum.
    Dorn M; Andreesen JR; Gottschalk G
    J Bacteriol; 1978 Jan; 133(1):26-32. PubMed ID: 618841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE RESPIRATION OF ISOLATED RAT-HEPATIC CELLS IN SUSPENSION.
    IYPE PT; BHARGAVA PM
    Biochem J; 1965 Jan; 94(1):284-8. PubMed ID: 14342244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two mutations affecting utilization of C4-dicarboxylic acids by Escherichia coli.
    Herbert AA; Guest JR
    J Gen Microbiol; 1970 Oct; 63(2):151-62. PubMed ID: 4929473
    [No Abstract]   [Full Text] [Related]  

  • 12. H2-dependent anaerobic growth of Escherichia coli on L-malate: succinate formation.
    Macy J; Kulla H; Gottschalk G
    J Bacteriol; 1976 Feb; 125(2):423-8. PubMed ID: 1107323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between pyruvate decarboxylation and branched-chain volatile acid synthesis in Ascaris mitochondria.
    Komuniecki R; Komuniecki PR; Saz HJ
    J Parasitol; 1981 Oct; 67(5):601-8. PubMed ID: 7299574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of pools of tricarboxylic acid cycle and related acids in bacteria.
    Siegel WH; Donohue T; Bernlohr RW
    Appl Environ Microbiol; 1977 Nov; 34(5):512-7. PubMed ID: 337897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. METABOLISM OF PROPIONATE BY SHEEP LIVER. INTERRELATIONS OF PROPIONATE AND GLUTAMATE IN AGED MITOCHONDRIA.
    SMITH RM; OSBORNE-WHITE WS; RUSSELL GR
    Biochem J; 1965 May; 95(2):431-6. PubMed ID: 14340093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells.
    Hohl C; Oestreich R; Rösen P; Wiesner R; Grieshaber M
    Arch Biochem Biophys; 1987 Dec; 259(2):527-35. PubMed ID: 3426243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized respiratory chain activities from Escherichia coli utilized to measure D- and L-lactate, succinate, L-malate, 3-glycerophosphate, pyruvate, or NAD(P)H.
    Burstein C; Adamowicz E; Boucherit K; Rabouille C; Romette JL
    Appl Biochem Biotechnol; 1986 Feb; 12(1):1-15. PubMed ID: 3518628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of malate in regulating the rate of mitochondrial respiration in vitro].
    Vovyleva-Guarriero VB; Wehbie RS; Muscatello U; Lardi GA
    Biokhimiia; 1991 Mar; 56(3):542-51. PubMed ID: 1883909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THIN-LAYER CHROMATOGRAPHY OF CARBOXYLIC ACIDS AND KETO ACIDS OF BIOLOGICAL INTEREST.
    PASSERA C; PEDROTTI A; FERRARI G
    J Chromatogr; 1964 Apr; 14():289-91. PubMed ID: 14165972
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effect of NADH and several Krebs cycle substrates on the endogenous metabolism of Pseudomonas fluorescens (type S)].
    Behr P; Meyer E; Wurtz B
    C R Seances Soc Biol Fil; 1977; 171(4):954-8. PubMed ID: 201351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.