These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 14857781)
1. The chemical composition of the wax of the white wax scale, Ceroplastes destructor (Newstead). HACKMAN RH Arch Biochem Biophys; 1951 Aug; 33(1):150-4. PubMed ID: 14857781 [No Abstract] [Full Text] [Related]
2. Studies of cuticular lipides of arthropods. II. The chemical composition of the wax from Ceroplastes destructor. GILBY AR Arch Biochem Biophys; 1957 Apr; 67(2):307-19. PubMed ID: 13425626 [No Abstract] [Full Text] [Related]
3. Studies of cuticular lipides of arthropods. I. The influence of biological factors on the composition of the wax from Ceroplastes destructor. GILBY AR; ALEXANDER AE Arch Biochem Biophys; 1957 Apr; 67(2):302-6. PubMed ID: 13425625 [No Abstract] [Full Text] [Related]
4. Sesterterpenoids and diterpenoids of the wax excreted by a scale insect, Ceroplastes pseudoceriferus. Toki M; Ooi T; Kusumi T J Nat Prod; 1999 Nov; 62(11):1504-9. PubMed ID: 10579861 [TBL] [Abstract][Full Text] [Related]
5. Population dynamics of the white wax scale, Ceroplastes destructor (Hemiptera: Coccidae), on citrus in South Africa, with implications for biological control. Wakgari WM; Giliomee JH Bull Entomol Res; 2001 Aug; 91(4):307-15. PubMed ID: 11587628 [TBL] [Abstract][Full Text] [Related]
6. [Use of entomopathogenic fungi to degrade wax secreted by Ceroplastes japonicus]. Zhang Z; Xie Y; Xue J; Fan J Wei Sheng Wu Xue Bao; 2013 May; 53(5):444-54. PubMed ID: 23957148 [TBL] [Abstract][Full Text] [Related]
7. The borderline of science: Western exploration and study of Chinese insect white wax from the seventeenth to the nineteenth century. Jiang X; Shi T Hist Sci; 2024 Mar; 62(1):54-80. PubMed ID: 37486031 [TBL] [Abstract][Full Text] [Related]
8. The structure of ceroplastol II a sesterterpenic alcohol isolated from insects wax. Ríos T; Quijano L Tetrahedron Lett; 1969 Apr; (17):1317-8. PubMed ID: 5795153 [No Abstract] [Full Text] [Related]
9. Anti-adhesive effects of plant wax coverage on insect attachment. Gorb EV; Gorb SN J Exp Bot; 2017 Nov; 68(19):5323-5337. PubMed ID: 28992238 [TBL] [Abstract][Full Text] [Related]
10. Policosanol fabrication from insect wax and optimization by response surface methodology. Ma J; Ma L; Zhang H; Zhang Z; Wang Y; Li K; Chen X PLoS One; 2018; 13(5):e0197343. PubMed ID: 29763430 [TBL] [Abstract][Full Text] [Related]
11. In vivo evaluation of insect wax for hair growth potential. Ma J; Ma L; Zhang Z; Li K; Wang Y; Chen X; Zhang H PLoS One; 2018; 13(2):e0192612. PubMed ID: 29438422 [TBL] [Abstract][Full Text] [Related]
12. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. Gorb E; Haas K; Henrich A; Enders S; Barbakadze N; Gorb S J Exp Biol; 2005 Dec; 208(Pt 24):4651-62. PubMed ID: 16326946 [TBL] [Abstract][Full Text] [Related]
13. Chemical composition of the wax secreted by a scale insect (Ceroplastes pseudoceriferus Green). Tamaki Y Lipids; 1966 Sep; 1(5):297-300. PubMed ID: 17805590 [TBL] [Abstract][Full Text] [Related]
14. Allergic reactions to insect secretions. Pecquet C Eur J Dermatol; 2013; 23(6):767-73. PubMed ID: 24449611 [TBL] [Abstract][Full Text] [Related]
15. Observation of an anisotropic texture inside the wax layer of insect cuticle. Mitov M; Soldan V; Balor S Arthropod Struct Dev; 2018 Nov; 47(6):622-626. PubMed ID: 30394343 [TBL] [Abstract][Full Text] [Related]
16. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing. Kanokpanont S; Damrongsakkul S; Ratanavaraporn J; Aramwit P Int J Biol Macromol; 2013 Apr; 55():88-97. PubMed ID: 23313451 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals. Koch K; Barthlott W; Koch S; Hommes A; Wandelt K; Mamdouh W; De-Feyter S; Broekmann P Planta; 2006 Jan; 223(2):258-70. PubMed ID: 16133211 [TBL] [Abstract][Full Text] [Related]
18. Localization of the Transpiration Barrier in the Epi- and Intracuticular Waxes of Eight Plant Species: Water Transport Resistances Are Associated with Fatty Acyl Rather Than Alicyclic Components. Jetter R; Riederer M Plant Physiol; 2016 Feb; 170(2):921-34. PubMed ID: 26644508 [TBL] [Abstract][Full Text] [Related]
19. Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Wen M; Buschhaus C; Jetter R Phytochemistry; 2006 Aug; 67(16):1808-17. PubMed ID: 16497341 [TBL] [Abstract][Full Text] [Related]
20. Low vapor pressure deficit reduces glandular trichome density and modifies the chemical composition of cuticular waxes in silver birch leaves. Lihavainen J; Ahonen V; Keski-Saari S; Sõber A; Oksanen E; Keinänen M Tree Physiol; 2017 Sep; 37(9):1166-1181. PubMed ID: 28460081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]