These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1486132)

  • 1. Basic functions of variability of simple pre-planned movements.
    Gutman SR; Gottlieb GL
    Biol Cybern; 1992; 68(1):63-73. PubMed ID: 1486132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of kinematic invariances of multijoint reaching movement.
    Goodman SR; Gottlieb GL
    Biol Cybern; 1995 Sep; 73(4):311-22. PubMed ID: 7578472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):290-303. PubMed ID: 12522180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic description of variability of fast movements: analytical and experimental approaches.
    Gutman SR; Latash ML; Almeida GL; Gottlieb GL
    Biol Cybern; 1993; 69(5-6):485-92. PubMed ID: 8274547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing and the control of rhythmic upper-limb movements.
    Shafir T; Brown SH
    J Mot Behav; 2010; 42(1):71-84. PubMed ID: 20051350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pointing in 3D space to remembered targets. II. Effects of movement speed toward kinesthetically defined targets.
    Adamovich SV; Berkinblit MB; Fookson O; Poizner H
    Exp Brain Res; 1999 Mar; 125(2):200-10. PubMed ID: 10204772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trajectory formation of the center-of-mass of the arm during reaching movements.
    Suzuki M; Yamazaki Y; Mizuno N; Matsunami K
    Neuroscience; 1997 Jan; 76(2):597-610. PubMed ID: 9015341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint angle variability in 3D bimanual pointing: uncontrolled manifold analysis.
    Domkin D; Laczko J; Djupsjöbacka M; Jaric S; Latash ML
    Exp Brain Res; 2005 May; 163(1):44-57. PubMed ID: 15668794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Errors in the control of joint rotations associated with inaccuracies in overarm throws.
    Hore J; Watts S; Tweed D
    J Neurophysiol; 1996 Mar; 75(3):1013-25. PubMed ID: 8867114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the relationship between joint angular velocity and motor cortical discharge during reaching.
    Reina GA; Moran DW; Schwartz AB
    J Neurophysiol; 2001 Jun; 85(6):2576-89. PubMed ID: 11387402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinematic comparison of single and multijoint pointing movements.
    Kaminski TR; Gentile AM
    Exp Brain Res; 1989; 78(3):547-56. PubMed ID: 2612598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.
    Kudo N; Choi K; Kagawa T; Uno Y
    Neural Comput; 2016 May; 28(5):950-69. PubMed ID: 26942751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postural control of three-dimensional prehension movements.
    Desmurget M; Prablanc C
    J Neurophysiol; 1997 Jan; 77(1):452-64. PubMed ID: 9120586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model.
    Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M
    J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint angle variability in the time course of reaching movements.
    Krüger M; Eggert T; Straube A
    Clin Neurophysiol; 2011 Apr; 122(4):759-66. PubMed ID: 21030301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of variability of initial kinematics and endpoints of reaching movements.
    Messier J; Kalaska JF
    Exp Brain Res; 1999 Mar; 125(2):139-52. PubMed ID: 10204767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.
    Maeda RS; Cluff T; Gribble PL; Pruszynski JA
    J Neurophysiol; 2017 Oct; 118(4):1984-1997. PubMed ID: 28701534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.