These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1486133)

  • 21. Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains.
    Mehta U; Majhi S
    ISA Trans; 2010 Oct; 49(4):501-9. PubMed ID: 20472233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions.
    Chon KH; Cohen RJ; Holstein-Rathlou NH
    Ann Biomed Eng; 1997; 25(4):731-8. PubMed ID: 9236985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissection of the neuron network in the catfish inner retina. III. Interpretation of spike kernels.
    Korenberg MJ; Sakai HM; Naka K
    J Neurophysiol; 1989 Jun; 61(6):1110-20. PubMed ID: 2746312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A unifying view of wiener and volterra theory and polynomial kernel regression.
    Franz MO; Schölkopf B
    Neural Comput; 2006 Dec; 18(12):3097-118. PubMed ID: 17052160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors affecting Volterra kernel estimation: emphasis on lung tissue viscoelasticity.
    Zhang Q; Suki B; Westwick DT; Lutchen KR
    Ann Biomed Eng; 1998; 26(1):103-16. PubMed ID: 10355555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of time-varying Hammerstein systems from ensemble data.
    Lortie M; Kearney RE
    Ann Biomed Eng; 2001; 29(7):619-35. PubMed ID: 11501626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear identification of stretch reflex dynamics.
    Kearney RE; Hunter IW
    Ann Biomed Eng; 1988; 16(1):79-94. PubMed ID: 3408053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of complex-valued wiener systems using B-spline neural network.
    Hong X; Chen S
    IEEE Trans Neural Netw; 2011 May; 22(5):818-25. PubMed ID: 21550875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear system identification for cascaded block model: an application to electrode polarization impedance.
    Shi JH; Sun HH
    IEEE Trans Biomed Eng; 1990 Jun; 37(6):574-87. PubMed ID: 2354839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of Eccentric Training System Based on Multiple-Input Single-Output Wiener Nonlinear Model.
    Liu C
    J Sport Rehabil; 2018 Nov; 27(6):605-608. PubMed ID: 29651908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of minimum-order Wiener modeling to retinal ganglion cell spatiotemporal dynamics.
    Citron MC; Marmarelis VZ
    Biol Cybern; 1987; 57(4-5):241-7. PubMed ID: 3689833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of nonlinear feedback control.
    Snippe HP; van Hateren JH
    Neural Comput; 2007 May; 19(5):1179-214. PubMed ID: 17381264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Hammerstein models with cubic spline nonlinearities.
    Dempsey EJ; Westwick DT
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):237-45. PubMed ID: 14765696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling of the control of heart rate by breathing using a kernel method.
    Ahmed AK; Fakhouri SY; Harness JB; Mearns AJ
    J Theor Biol; 1986 Mar; 119(1):67-79. PubMed ID: 3713224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Control of Volterra-type nonlinear multi-input-output systems using a nonlinear dynamic input observer].
    Wakamatsu H
    Tokyo Ika Shika Daigaku Iyo Kizai Kenkyusho Hokoku; 1985; 19():71-82. PubMed ID: 3869719
    [No Abstract]   [Full Text] [Related]  

  • 37. Identification of multiple-input systems with highly coupled inputs: application to EMG prediction from multiple intracortical electrodes.
    Westwick DT; Pohlmeyer EA; Solla SA; Miller LE; Perreault EJ
    Neural Comput; 2006 Feb; 18(2):329-55. PubMed ID: 16378517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stochastic system identification of skin properties: linear and wiener static nonlinear methods.
    Chen Y; Hunter IW
    Ann Biomed Eng; 2012 Oct; 40(10):2277-91. PubMed ID: 22539150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation and transformation of second-order nonlinearity in catfish retina.
    Naka K; Sakai HM; Ishii N
    Ann Biomed Eng; 1988; 16(1):53-64. PubMed ID: 3408051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of physiological systems: estimation of linear time-varying dynamics with non-white inputs and noisy outputs.
    Lortie M; Kearney RE
    Med Biol Eng Comput; 2001 May; 39(3):381-90. PubMed ID: 11465895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.