These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14861427)

  • 21. Nuclear magnetic resonance imaging of freeze-drying.
    Li X; Nail SL
    J Pharm Sci; 2006 Nov; 95(11):2516-25. PubMed ID: 16960823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Protection by autonomous refrigerated clothing against the effects of exposure to high temperature during muscular exercise].
    Petit JM; Hausman A; Pirnay F; Deroanne R; Juchmes J
    Arch Int Physiol Biochim; 1967 Feb; 75(1):146-8. PubMed ID: 4168900
    [No Abstract]   [Full Text] [Related]  

  • 23. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.
    Geidobler R; Winter G
    Eur J Pharm Biopharm; 2013 Oct; 85(2):214-22. PubMed ID: 23643793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of freezing and freeze-drying on the viability and storage of Lilium longiflorum L. and Zea mays L. pollen.
    Nath J; Anderson JO
    Cryobiology; 1975 Feb; 12(1):81-8. PubMed ID: 1109873
    [No Abstract]   [Full Text] [Related]  

  • 25. [Study on the preserving techniques of squeezed juice of fresh ginger and Glutinous rehannia].
    Yang H; Hao JD; Li JP; Yi H; Ma H
    Zhongguo Zhong Yao Za Zhi; 2003 Dec; 28(12):1145-8. PubMed ID: 15617495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of different preservatives of biological scleral implants.
    Vucicevic ZM; Scheie HG; Yanoff M; Ralston J
    Mod Probl Ophthalmol; 1972; 10():148-52. PubMed ID: 5056320
    [No Abstract]   [Full Text] [Related]  

  • 27. Ice nucleation temperature influences recovery of activity of a model protein after freeze drying.
    Cochran T; Nail SL
    J Pharm Sci; 2009 Sep; 98(9):3495-8. PubMed ID: 19492339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A survey of the different methods used. Experimental study on the application of some methods found suitable to our country.
    Shoukry I; el-Guindy N; el-Nashar H
    Bull Ophthalmol Soc Egypt; 1972; 65(69):55-86. PubMed ID: 4354257
    [No Abstract]   [Full Text] [Related]  

  • 29. An inexpensive replacement for dry ice in the laboratory.
    Ismalaj T; Sackett DL
    Anal Biochem; 2015 Apr; 474():38-9. PubMed ID: 25617823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
    Goshima H; Do G; Nakagawa K
    J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Further studies on long term preservation of marine bacteria.
    Greig MA; Hendrie MS; Shewan JM
    J Appl Bacteriol; 1970 Sep; 33(3):528-32. PubMed ID: 4923560
    [No Abstract]   [Full Text] [Related]  

  • 32. Acute illness from dry ice exposure during hurricane Ivan--Alabama, 2004.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2004 Dec; 53(50):1182-3. PubMed ID: 15614236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple sperm preservation by freeze-drying for conserving animal strains.
    Kaneko T
    Methods Mol Biol; 2015; 1239():317-29. PubMed ID: 25408416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Freezing of tissue-limits for the autoradiographic localization of diffusible substances.
    Frederik PM; Busing WM
    J Histochem Cytochem; 1979 Nov; 27(11):1520-3. PubMed ID: 512336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transporting cells over several days without dry-ice.
    Wheatley SP; Wheatley DN
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31578238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can controlled ice nucleation improve freeze-drying of highly-concentrated protein formulations?
    Geidobler R; Konrad I; Winter G
    J Pharm Sci; 2013 Nov; 102(11):3915-9. PubMed ID: 23963664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. APPARATUS FOR FREEZE-DRYING AT VERY LOW, CONTROLLED TEMPERATURES (AFBR FREEZE-DRYING APPARATUS MODEL 1).
    MACKENZIE AP; LUYET BJ
    Biodynamica; 1964 Nov; 9():177-91. PubMed ID: 14232969
    [No Abstract]   [Full Text] [Related]  

  • 38. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
    Fang R; Tanaka K; Mudhivarthi V; Bogner RH; Pikal MJ
    J Pharm Sci; 2018 Mar; 107(3):824-830. PubMed ID: 29074380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [New apparatus for lyophilization].
    HAUDUROY P
    Ann Biol Clin (Paris); 1951; 9(1-2):100-7. PubMed ID: 14819726
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.