BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 14861784)

  • 1. The shortening of rabbit muscles during rigor mortis; its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction.
    BENDALL JR
    J Physiol; 1951 Jun; 114(1-2):71-88. PubMed ID: 14861784
    [No Abstract]   [Full Text] [Related]  

  • 2. [STUDIES ON CONTRACTILE, ELASTIC AND MORPHOLOGIC DEFORMATIONS OF MUSCLES IN RIGOR MORTIS AND CONNECTIONS BETWEEN RIGIDITY AND POTOMORTEM METABOLISM].
    SCHMIDT O; FORSTER B; DOERING G; SCHULZ G
    Acta Med Leg Soc (Liege); 1964; 17():37-49. PubMed ID: 14250406
    [No Abstract]   [Full Text] [Related]  

  • 3. The content of adenosinetriphosphate and creatine phosphate in uterine muscle of rats and rabbits.
    WALAAS O; WALAAS E
    Acta Physiol Scand; 1950; 21(1):1-17. PubMed ID: 14777337
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemistry of muscle contraction; contraction of muscle without fission of adenosine triphosphate or creatine phosphate.
    FLECKENSTEIN A; JANKE J; DAVIES RE; KREBS HA
    Nature; 1954 Dec; 174(4441):1081-3. PubMed ID: 13214080
    [No Abstract]   [Full Text] [Related]  

  • 5. Chemical energy usage during isometric twitches of frog sartorius muscle intoxicated with an isomer of creatine, beta-guanidinopropionate.
    De Saedeleer M; Marechal G
    Pflugers Arch; 1984 Oct; 402(2):185-9. PubMed ID: 6335584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic and functional properties of skeletal muscle in relation to meat quality.
    Heffron JJ
    J S Afr Vet Assoc; 1973 Jun; 44(2):119-29. PubMed ID: 4272268
    [No Abstract]   [Full Text] [Related]  

  • 7. Onset of rigor mortis is earlier in red muscle than in white muscle.
    Kobayashi M; Takatori T; Nakajima M; Sakurada K; Hatanaka K; Ikegaya H; Matsuda Y; Iwase H
    Int J Legal Med; 2000; 113(4):240-3. PubMed ID: 10929241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of rigor mortis is not affected by muscle volume.
    Kobayashi M; Ikegaya H; Takase I; Hatanaka K; Sakurada K; Iwase H
    Forensic Sci Int; 2001 Apr; 117(3):213-9. PubMed ID: 11248452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Molecular basis of muscular contraction (author's transl)].
    Dabrowska R; Drabikowski W
    Postepy Biochem; 1973; 19(3):343-59. PubMed ID: 4274063
    [No Abstract]   [Full Text] [Related]  

  • 10. POTASSIUM CONTRACTURES AND CREATINE PHOSPHATE BREAKDOWN IN FROG MUSCLE.
    EDWARDS C; CARLSON FD
    Biochim Biophys Acta; 1964 Jul; 88():213-5. PubMed ID: 14203152
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy metabolism of skeletal muscle containing cyclocreatine phosphate. Delay in onset of rigor mortis and decreased glycogenolysis in response to ischemia or epinephrine.
    Annesley TM; Walker JB
    J Biol Chem; 1980 May; 255(9):3924-30. PubMed ID: 7372660
    [No Abstract]   [Full Text] [Related]  

  • 12. [Physiological and morphological studies of the mechanism and development of rigor mortis (author's transl)].
    Krause D; Zett L
    Z Rechtsmed; 1973 Jun; 72(4):245-54. PubMed ID: 4787795
    [No Abstract]   [Full Text] [Related]  

  • 13. Reconsideration of the sequence of rigor mortis through postmortem changes in adenosine nucleotides and lactic acid in different rat muscles.
    Kobayashi M; Takatori T; Iwadate K; Nakajima M
    Forensic Sci Int; 1996 Oct; 82(3):243-53. PubMed ID: 8948133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity of the rigor mortis process in normal and germ-free rats.
    Forrest J; Kastenschmidt LL; Greaser ML; Sair RA; Cassens RG; Hoekstra WG; Briskey EJ
    Nature; 1967 Apr; 214(5087):507. PubMed ID: 6032885
    [No Abstract]   [Full Text] [Related]  

  • 15. [Primary dilatation of animal muscle in the early post mortem period].
    Döring G; Forster B; Kauls HP
    Z Rechtsmed; 1970; 67(2):87-98. PubMed ID: 5495664
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence for a relationship between ATP hydrolysis and changes in extracellular space and fibre diameter during rigor development in skeletal muscle.
    Heffron JJ; Hegarty PV
    Comp Biochem Physiol A Comp Physiol; 1974 Sep; 49(1A):43-56. PubMed ID: 4153729
    [No Abstract]   [Full Text] [Related]  

  • 17. The effects of contraction and ischaemia on creatine phosphate and adenosine triphosphate in M. semitendinosus of the pig.
    McLoughlin JV; Tarrant PJ; Harrington MG
    Proc R Ir Acad B; 1973; 73(7):95-108. PubMed ID: 4796832
    [No Abstract]   [Full Text] [Related]  

  • 18. Does the sequence of onset of rigor mortis depend on the proportion of muscle fibre types and on intra-muscular glycogen content?
    Kobayashi M; Takatori T; Nakajima M; Saka K; Iwase H; Nagao M; Niijima H; Matsuda Y
    Int J Legal Med; 1999; 112(3):167-71. PubMed ID: 10335879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evaluation of rigor mortis. III. Comparative study of the evolution of rigor mortis in different sized muscle groups in rats.
    Krompecher T; Fryc O
    Forensic Sci Int; 1978; 12(2):97-102. PubMed ID: 730101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia liberation during rigor mortis and its relation to changes in the adenine and inosine nucleotides of rabbit muscle.
    BENDALL JR; DAVEY CL
    Biochim Biophys Acta; 1957 Oct; 26(1):93-103. PubMed ID: 13479466
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.